| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > class2seteq | GIF version | ||
| Description: Equality theorem for classes and sets . (Contributed by NM, 13-Dec-2005.) (Proof shortened by Raph Levien, 30-Jun-2006.) |
| Ref | Expression |
|---|---|
| class2seteq | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2784 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | ax-1 6 | . . . . 5 ⊢ (𝐴 ∈ V → (𝑥 ∈ 𝐴 → 𝐴 ∈ V)) | |
| 3 | 2 | ralrimiv 2579 | . . . 4 ⊢ (𝐴 ∈ V → ∀𝑥 ∈ 𝐴 𝐴 ∈ V) |
| 4 | rabid2 2684 | . . . 4 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐴 ∈ V) | |
| 5 | 3, 4 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V}) |
| 6 | 5 | eqcomd 2212 | . 2 ⊢ (𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
| 7 | 1, 6 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {crab 2489 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-ral 2490 df-rab 2494 df-v 2775 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |