ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbieb Unicode version

Theorem csbieb 3139
Description: Bidirectional conversion between an implicit class substitution hypothesis  x  =  A  ->  B  =  C and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
Hypotheses
Ref Expression
csbieb.1  |-  A  e. 
_V
csbieb.2  |-  F/_ x C
Assertion
Ref Expression
csbieb  |-  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem csbieb
StepHypRef Expression
1 csbieb.1 . 2  |-  A  e. 
_V
2 csbieb.2 . 2  |-  F/_ x C
3 csbiebt 3137 . 2  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
41, 2, 3mp2an 426 1  |-  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373    e. wcel 2177   F/_wnfc 2336   _Vcvv 2773   [_csb 3097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3003  df-csb 3098
This theorem is referenced by:  csbiebg  3140
  Copyright terms: Public domain W3C validator