ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbieb Unicode version

Theorem csbieb 3086
Description: Bidirectional conversion between an implicit class substitution hypothesis  x  =  A  ->  B  =  C and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
Hypotheses
Ref Expression
csbieb.1  |-  A  e. 
_V
csbieb.2  |-  F/_ x C
Assertion
Ref Expression
csbieb  |-  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem csbieb
StepHypRef Expression
1 csbieb.1 . 2  |-  A  e. 
_V
2 csbieb.2 . 2  |-  F/_ x C
3 csbiebt 3084 . 2  |-  ( ( A  e.  _V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
41, 2, 3mp2an 423 1  |-  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343    e. wcel 2136   F/_wnfc 2295   _Vcvv 2726   [_csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by:  csbiebg  3087
  Copyright terms: Public domain W3C validator