Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbieb Unicode version

Theorem csbieb 3036
 Description: Bidirectional conversion between an implicit class substitution hypothesis and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
Hypotheses
Ref Expression
csbieb.1
csbieb.2
Assertion
Ref Expression
csbieb
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem csbieb
StepHypRef Expression
1 csbieb.1 . 2
2 csbieb.2 . 2
3 csbiebt 3034 . 2
41, 2, 3mp2an 422 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 104  wal 1329   wceq 1331   wcel 1480  wnfc 2266  cvv 2681  csb 2998 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-sbc 2905  df-csb 2999 This theorem is referenced by:  csbiebg  3037
 Copyright terms: Public domain W3C validator