Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > csbiebg | Unicode version |
Description: Bidirectional conversion between an implicit class substitution hypothesis and its explicit substitution equivalent. (Contributed by NM, 24-Mar-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
csbiebg.2 |
Ref | Expression |
---|---|
csbiebg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2180 | . . . 4 | |
2 | 1 | imbi1d 230 | . . 3 |
3 | 2 | albidv 1817 | . 2 |
4 | csbeq1 3052 | . . 3 | |
5 | 4 | eqeq1d 2179 | . 2 |
6 | vex 2733 | . . 3 | |
7 | csbiebg.2 | . . 3 | |
8 | 6, 7 | csbieb 3090 | . 2 |
9 | 3, 5, 8 | vtoclbg 2791 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 wcel 2141 wnfc 2299 csb 3049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-sbc 2956 df-csb 3050 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |