ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbieb GIF version

Theorem csbieb 3086
Description: Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
Hypotheses
Ref Expression
csbieb.1 𝐴 ∈ V
csbieb.2 𝑥𝐶
Assertion
Ref Expression
csbieb (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbieb
StepHypRef Expression
1 csbieb.1 . 2 𝐴 ∈ V
2 csbieb.2 . 2 𝑥𝐶
3 csbiebt 3084 . 2 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
41, 2, 3mp2an 423 1 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341   = wceq 1343  wcel 2136  wnfc 2295  Vcvv 2726  csb 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952  df-csb 3046
This theorem is referenced by:  csbiebg  3087
  Copyright terms: Public domain W3C validator