ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbieb GIF version

Theorem csbieb 2969
Description: Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
Hypotheses
Ref Expression
csbieb.1 𝐴 ∈ V
csbieb.2 𝑥𝐶
Assertion
Ref Expression
csbieb (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbieb
StepHypRef Expression
1 csbieb.1 . 2 𝐴 ∈ V
2 csbieb.2 . 2 𝑥𝐶
3 csbiebt 2967 . 2 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
41, 2, 3mp2an 417 1 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103  wal 1287   = wceq 1289  wcel 1438  wnfc 2215  Vcvv 2619  csb 2933
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-sbc 2841  df-csb 2934
This theorem is referenced by:  csbiebg  2970
  Copyright terms: Public domain W3C validator