ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbieb GIF version

Theorem csbieb 3126
Description: Bidirectional conversion between an implicit class substitution hypothesis 𝑥 = 𝐴𝐵 = 𝐶 and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
Hypotheses
Ref Expression
csbieb.1 𝐴 ∈ V
csbieb.2 𝑥𝐶
Assertion
Ref Expression
csbieb (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem csbieb
StepHypRef Expression
1 csbieb.1 . 2 𝐴 ∈ V
2 csbieb.2 . 2 𝑥𝐶
3 csbiebt 3124 . 2 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
41, 2, 3mp2an 426 1 (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wcel 2167  wnfc 2326  Vcvv 2763  csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by:  csbiebg  3127
  Copyright terms: Public domain W3C validator