ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiedf Unicode version

Theorem csbiedf 3142
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiedf.1  |-  F/ x ph
csbiedf.2  |-  ( ph  -> 
F/_ x C )
csbiedf.3  |-  ( ph  ->  A  e.  V )
csbiedf.4  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
Assertion
Ref Expression
csbiedf  |-  ( ph  ->  [_ A  /  x ]_ B  =  C
)
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    C( x)    V( x)

Proof of Theorem csbiedf
StepHypRef Expression
1 csbiedf.1 . . 3  |-  F/ x ph
2 csbiedf.4 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
32ex 115 . . 3  |-  ( ph  ->  ( x  =  A  ->  B  =  C ) )
41, 3alrimi 1546 . 2  |-  ( ph  ->  A. x ( x  =  A  ->  B  =  C ) )
5 csbiedf.3 . . 3  |-  ( ph  ->  A  e.  V )
6 csbiedf.2 . . 3  |-  ( ph  -> 
F/_ x C )
7 csbiebt 3141 . . 3  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
85, 6, 7syl2anc 411 . 2  |-  ( ph  ->  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
94, 8mpbid 147 1  |-  ( ph  ->  [_ A  /  x ]_ B  =  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   F/wnf 1484    e. wcel 2178   F/_wnfc 2337   [_csb 3101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sbc 3006  df-csb 3102
This theorem is referenced by:  csbied  3148  csbie2t  3150  fprodsplit1f  12060
  Copyright terms: Public domain W3C validator