ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbiedf Unicode version

Theorem csbiedf 3095
Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
csbiedf.1  |-  F/ x ph
csbiedf.2  |-  ( ph  -> 
F/_ x C )
csbiedf.3  |-  ( ph  ->  A  e.  V )
csbiedf.4  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
Assertion
Ref Expression
csbiedf  |-  ( ph  ->  [_ A  /  x ]_ B  =  C
)
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    C( x)    V( x)

Proof of Theorem csbiedf
StepHypRef Expression
1 csbiedf.1 . . 3  |-  F/ x ph
2 csbiedf.4 . . . 4  |-  ( (
ph  /\  x  =  A )  ->  B  =  C )
32ex 115 . . 3  |-  ( ph  ->  ( x  =  A  ->  B  =  C ) )
41, 3alrimi 1520 . 2  |-  ( ph  ->  A. x ( x  =  A  ->  B  =  C ) )
5 csbiedf.3 . . 3  |-  ( ph  ->  A  e.  V )
6 csbiedf.2 . . 3  |-  ( ph  -> 
F/_ x C )
7 csbiebt 3094 . . 3  |-  ( ( A  e.  V  /\  F/_ x C )  -> 
( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
85, 6, 7syl2anc 411 . 2  |-  ( ph  ->  ( A. x ( x  =  A  ->  B  =  C )  <->  [_ A  /  x ]_ B  =  C )
)
94, 8mpbid 147 1  |-  ( ph  ->  [_ A  /  x ]_ B  =  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353   F/wnf 1458    e. wcel 2146   F/_wnfc 2304   [_csb 3055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-sbc 2961  df-csb 3056
This theorem is referenced by:  csbied  3101  csbie2t  3103  fprodsplit1f  11608
  Copyright terms: Public domain W3C validator