ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctlemuom Unicode version

Theorem ctiunctlemuom 12922
Description: Lemma for ctiunct 12926. (Contributed by Jim Kingdon, 28-Oct-2023.)
Hypotheses
Ref Expression
ctiunct.som  |-  ( ph  ->  S  C_  om )
ctiunct.sdc  |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )
ctiunct.f  |-  ( ph  ->  F : S -onto-> A
)
ctiunct.tom  |-  ( (
ph  /\  x  e.  A )  ->  T  C_ 
om )
ctiunct.tdc  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  T )
ctiunct.g  |-  ( (
ph  /\  x  e.  A )  ->  G : T -onto-> B )
ctiunct.j  |-  ( ph  ->  J : om -1-1-onto-> ( om  X.  om ) )
ctiunct.u  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
Assertion
Ref Expression
ctiunctlemuom  |-  ( ph  ->  U  C_  om )

Proof of Theorem ctiunctlemuom
StepHypRef Expression
1 ctiunct.u . . 3  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
2 ssrab2 3286 . . 3  |-  { z  e.  om  |  ( ( 1st `  ( J `  z )
)  e.  S  /\  ( 2nd `  ( J `
 z ) )  e.  [_ ( F `
 ( 1st `  ( J `  z )
) )  /  x ]_ T ) }  C_  om
31, 2eqsstri 3233 . 2  |-  U  C_  om
43a1i 9 1  |-  ( ph  ->  U  C_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2178   A.wral 2486   {crab 2490   [_csb 3101    C_ wss 3174   omcom 4656    X. cxp 4691   -onto->wfo 5288   -1-1-onto->wf1o 5289   ` cfv 5290   1stc1st 6247   2ndc2nd 6248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-in 3180  df-ss 3187
This theorem is referenced by:  ctiunct  12926
  Copyright terms: Public domain W3C validator