ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctlemuom Unicode version

Theorem ctiunctlemuom 12137
Description: Lemma for ctiunct 12141. (Contributed by Jim Kingdon, 28-Oct-2023.)
Hypotheses
Ref Expression
ctiunct.som  |-  ( ph  ->  S  C_  om )
ctiunct.sdc  |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )
ctiunct.f  |-  ( ph  ->  F : S -onto-> A
)
ctiunct.tom  |-  ( (
ph  /\  x  e.  A )  ->  T  C_ 
om )
ctiunct.tdc  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  T )
ctiunct.g  |-  ( (
ph  /\  x  e.  A )  ->  G : T -onto-> B )
ctiunct.j  |-  ( ph  ->  J : om -1-1-onto-> ( om  X.  om ) )
ctiunct.u  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
Assertion
Ref Expression
ctiunctlemuom  |-  ( ph  ->  U  C_  om )

Proof of Theorem ctiunctlemuom
StepHypRef Expression
1 ctiunct.u . . 3  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
2 ssrab2 3213 . . 3  |-  { z  e.  om  |  ( ( 1st `  ( J `  z )
)  e.  S  /\  ( 2nd `  ( J `
 z ) )  e.  [_ ( F `
 ( 1st `  ( J `  z )
) )  /  x ]_ T ) }  C_  om
31, 2eqsstri 3160 . 2  |-  U  C_  om
43a1i 9 1  |-  ( ph  ->  U  C_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 820    = wceq 1335    e. wcel 2128   A.wral 2435   {crab 2439   [_csb 3031    C_ wss 3102   omcom 4547    X. cxp 4581   -onto->wfo 5165   -1-1-onto->wf1o 5166   ` cfv 5167   1stc1st 6080   2ndc2nd 6081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rab 2444  df-in 3108  df-ss 3115
This theorem is referenced by:  ctiunct  12141
  Copyright terms: Public domain W3C validator