ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctlemuom Unicode version

Theorem ctiunctlemuom 12369
Description: Lemma for ctiunct 12373. (Contributed by Jim Kingdon, 28-Oct-2023.)
Hypotheses
Ref Expression
ctiunct.som  |-  ( ph  ->  S  C_  om )
ctiunct.sdc  |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )
ctiunct.f  |-  ( ph  ->  F : S -onto-> A
)
ctiunct.tom  |-  ( (
ph  /\  x  e.  A )  ->  T  C_ 
om )
ctiunct.tdc  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  T )
ctiunct.g  |-  ( (
ph  /\  x  e.  A )  ->  G : T -onto-> B )
ctiunct.j  |-  ( ph  ->  J : om -1-1-onto-> ( om  X.  om ) )
ctiunct.u  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
Assertion
Ref Expression
ctiunctlemuom  |-  ( ph  ->  U  C_  om )

Proof of Theorem ctiunctlemuom
StepHypRef Expression
1 ctiunct.u . . 3  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
2 ssrab2 3227 . . 3  |-  { z  e.  om  |  ( ( 1st `  ( J `  z )
)  e.  S  /\  ( 2nd `  ( J `
 z ) )  e.  [_ ( F `
 ( 1st `  ( J `  z )
) )  /  x ]_ T ) }  C_  om
31, 2eqsstri 3174 . 2  |-  U  C_  om
43a1i 9 1  |-  ( ph  ->  U  C_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 824    = wceq 1343    e. wcel 2136   A.wral 2444   {crab 2448   [_csb 3045    C_ wss 3116   omcom 4567    X. cxp 4602   -onto->wfo 5186   -1-1-onto->wf1o 5187   ` cfv 5188   1stc1st 6106   2ndc2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-in 3122  df-ss 3129
This theorem is referenced by:  ctiunct  12373
  Copyright terms: Public domain W3C validator