Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctiunctlemuom | Unicode version |
Description: Lemma for ctiunct 12141. (Contributed by Jim Kingdon, 28-Oct-2023.) |
Ref | Expression |
---|---|
ctiunct.som | |
ctiunct.sdc | DECID |
ctiunct.f | |
ctiunct.tom | |
ctiunct.tdc | DECID |
ctiunct.g | |
ctiunct.j | |
ctiunct.u |
Ref | Expression |
---|---|
ctiunctlemuom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctiunct.u | . . 3 | |
2 | ssrab2 3213 | . . 3 | |
3 | 1, 2 | eqsstri 3160 | . 2 |
4 | 3 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 DECID wdc 820 wceq 1335 wcel 2128 wral 2435 crab 2439 csb 3031 wss 3102 com 4547 cxp 4581 wfo 5165 wf1o 5166 cfv 5167 c1st 6080 c2nd 6081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rab 2444 df-in 3108 df-ss 3115 |
This theorem is referenced by: ctiunct 12141 |
Copyright terms: Public domain | W3C validator |