Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctiunctlemuom | Unicode version |
Description: Lemma for ctiunct 12395. (Contributed by Jim Kingdon, 28-Oct-2023.) |
Ref | Expression |
---|---|
ctiunct.som | |
ctiunct.sdc | DECID |
ctiunct.f | |
ctiunct.tom | |
ctiunct.tdc | DECID |
ctiunct.g | |
ctiunct.j | |
ctiunct.u |
Ref | Expression |
---|---|
ctiunctlemuom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctiunct.u | . . 3 | |
2 | ssrab2 3232 | . . 3 | |
3 | 1, 2 | eqsstri 3179 | . 2 |
4 | 3 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 DECID wdc 829 wceq 1348 wcel 2141 wral 2448 crab 2452 csb 3049 wss 3121 com 4574 cxp 4609 wfo 5196 wf1o 5197 cfv 5198 c1st 6117 c2nd 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-in 3127 df-ss 3134 |
This theorem is referenced by: ctiunct 12395 |
Copyright terms: Public domain | W3C validator |