Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctiunctlemuom | Unicode version |
Description: Lemma for ctiunct 12373. (Contributed by Jim Kingdon, 28-Oct-2023.) |
Ref | Expression |
---|---|
ctiunct.som | |
ctiunct.sdc | DECID |
ctiunct.f | |
ctiunct.tom | |
ctiunct.tdc | DECID |
ctiunct.g | |
ctiunct.j | |
ctiunct.u |
Ref | Expression |
---|---|
ctiunctlemuom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctiunct.u | . . 3 | |
2 | ssrab2 3227 | . . 3 | |
3 | 1, 2 | eqsstri 3174 | . 2 |
4 | 3 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 DECID wdc 824 wceq 1343 wcel 2136 wral 2444 crab 2448 csb 3045 wss 3116 com 4567 cxp 4602 wfo 5186 wf1o 5187 cfv 5188 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-in 3122 df-ss 3129 |
This theorem is referenced by: ctiunct 12373 |
Copyright terms: Public domain | W3C validator |