ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctlemudc Unicode version

Theorem ctiunctlemudc 12654
Description: Lemma for ctiunct 12657. (Contributed by Jim Kingdon, 28-Oct-2023.)
Hypotheses
Ref Expression
ctiunct.som  |-  ( ph  ->  S  C_  om )
ctiunct.sdc  |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )
ctiunct.f  |-  ( ph  ->  F : S -onto-> A
)
ctiunct.tom  |-  ( (
ph  /\  x  e.  A )  ->  T  C_ 
om )
ctiunct.tdc  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  T )
ctiunct.g  |-  ( (
ph  /\  x  e.  A )  ->  G : T -onto-> B )
ctiunct.j  |-  ( ph  ->  J : om -1-1-onto-> ( om  X.  om ) )
ctiunct.u  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
Assertion
Ref Expression
ctiunctlemudc  |-  ( ph  ->  A. n  e.  om DECID  n  e.  U )
Distinct variable groups:    x, A    n, F, x    z, F, x   
n, J, x    z, J    S, n    z, S    T, n    z, T    U, n    ph, x
Allowed substitution hints:    ph( z, n)    A( z, n)    B( x, z, n)    S( x)    T( x)    U( x, z)    G( x, z, n)

Proof of Theorem ctiunctlemudc
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eleq1 2259 . . . . . . . . 9  |-  ( n  =  ( 1st `  ( J `  m )
)  ->  ( n  e.  S  <->  ( 1st `  ( J `  m )
)  e.  S ) )
21dcbid 839 . . . . . . . 8  |-  ( n  =  ( 1st `  ( J `  m )
)  ->  (DECID  n  e.  S 
<-> DECID  ( 1st `  ( J `
 m ) )  e.  S ) )
3 ctiunct.sdc . . . . . . . . 9  |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )
43adantr 276 . . . . . . . 8  |-  ( (
ph  /\  m  e.  om )  ->  A. n  e.  om DECID  n  e.  S )
5 ctiunct.j . . . . . . . . . . . 12  |-  ( ph  ->  J : om -1-1-onto-> ( om  X.  om ) )
65adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  om )  ->  J : om
-1-1-onto-> ( om  X.  om )
)
7 f1of 5504 . . . . . . . . . . 11  |-  ( J : om -1-1-onto-> ( om  X.  om )  ->  J : om --> ( om  X.  om )
)
86, 7syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  om )  ->  J : om
--> ( om  X.  om ) )
9 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  om )
108, 9ffvelcdmd 5698 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  om )  ->  ( J `  m )  e.  ( om  X.  om )
)
11 xp1st 6223 . . . . . . . . 9  |-  ( ( J `  m )  e.  ( om  X.  om )  ->  ( 1st `  ( J `  m
) )  e.  om )
1210, 11syl 14 . . . . . . . 8  |-  ( (
ph  /\  m  e.  om )  ->  ( 1st `  ( J `  m
) )  e.  om )
132, 4, 12rspcdva 2873 . . . . . . 7  |-  ( (
ph  /\  m  e.  om )  -> DECID  ( 1st `  ( J `  m )
)  e.  S )
1413adantr 276 . . . . . 6  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  -> DECID  ( 1st `  ( J `  m )
)  e.  S )
15 eleq1 2259 . . . . . . . 8  |-  ( n  =  ( 2nd `  ( J `  m )
)  ->  ( n  e.  [_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T 
<->  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) )
1615dcbid 839 . . . . . . 7  |-  ( n  =  ( 2nd `  ( J `  m )
)  ->  (DECID  n  e.  [_ ( F `  ( 1st `  ( J `  m ) ) )  /  x ]_ T  <-> DECID  ( 2nd `  ( J `  m
) )  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) )
17 ctiunct.f . . . . . . . . . . 11  |-  ( ph  ->  F : S -onto-> A
)
18 fof 5480 . . . . . . . . . . 11  |-  ( F : S -onto-> A  ->  F : S --> A )
1917, 18syl 14 . . . . . . . . . 10  |-  ( ph  ->  F : S --> A )
2019ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  F : S --> A )
21 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  ( 1st `  ( J `  m ) )  e.  S )
2220, 21ffvelcdmd 5698 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  ( F `  ( 1st `  ( J `  m
) ) )  e.  A )
23 ctiunct.tdc . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  T )
2423ralrimiva 2570 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  A. n  e.  om DECID  n  e.  T )
2524ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  A. x  e.  A  A. n  e.  om DECID  n  e.  T )
26 nfcv 2339 . . . . . . . . . 10  |-  F/_ x om
27 nfcsb1v 3117 . . . . . . . . . . . 12  |-  F/_ x [_ ( F `  ( 1st `  ( J `  m ) ) )  /  x ]_ T
2827nfcri 2333 . . . . . . . . . . 11  |-  F/ x  n  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T
2928nfdc 1673 . . . . . . . . . 10  |-  F/ xDECID  n  e.  [_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T
3026, 29nfralya 2537 . . . . . . . . 9  |-  F/ x A. n  e.  om DECID  n  e.  [_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T
31 csbeq1a 3093 . . . . . . . . . . . 12  |-  ( x  =  ( F `  ( 1st `  ( J `
 m ) ) )  ->  T  =  [_ ( F `  ( 1st `  ( J `  m ) ) )  /  x ]_ T
)
3231eleq2d 2266 . . . . . . . . . . 11  |-  ( x  =  ( F `  ( 1st `  ( J `
 m ) ) )  ->  ( n  e.  T  <->  n  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) )
3332dcbid 839 . . . . . . . . . 10  |-  ( x  =  ( F `  ( 1st `  ( J `
 m ) ) )  ->  (DECID  n  e.  T 
<-> DECID  n  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
3433ralbidv 2497 . . . . . . . . 9  |-  ( x  =  ( F `  ( 1st `  ( J `
 m ) ) )  ->  ( A. n  e.  om DECID  n  e.  T  <->  A. n  e.  om DECID  n  e.  [_ ( F `  ( 1st `  ( J `  m ) ) )  /  x ]_ T
) )
3530, 34rspc 2862 . . . . . . . 8  |-  ( ( F `  ( 1st `  ( J `  m
) ) )  e.  A  ->  ( A. x  e.  A  A. n  e.  om DECID  n  e.  T  ->  A. n  e.  om DECID  n  e.  [_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T ) )
3622, 25, 35sylc 62 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  A. n  e.  om DECID  n  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T )
3710adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  ( J `  m )  e.  ( om  X.  om ) )
38 xp2nd 6224 . . . . . . . 8  |-  ( ( J `  m )  e.  ( om  X.  om )  ->  ( 2nd `  ( J `  m
) )  e.  om )
3937, 38syl 14 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  ( 2nd `  ( J `  m ) )  e. 
om )
4016, 36, 39rspcdva 2873 . . . . . 6  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  -> DECID  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T )
41 dcan2 936 . . . . . 6  |-  (DECID  ( 1st `  ( J `  m
) )  e.  S  ->  (DECID  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T  -> DECID  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) ) )
4214, 40, 41sylc 62 . . . . 5  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  -> DECID  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
43 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  om )  /\  -.  ( 1st `  ( J `
 m ) )  e.  S )  ->  -.  ( 1st `  ( J `  m )
)  e.  S )
4443intnanrd 933 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  om )  /\  -.  ( 1st `  ( J `
 m ) )  e.  S )  ->  -.  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
4544olcd 735 . . . . . 6  |-  ( ( ( ph  /\  m  e.  om )  /\  -.  ( 1st `  ( J `
 m ) )  e.  S )  -> 
( ( ( 1st `  ( J `  m
) )  e.  S  /\  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T )  \/ 
-.  ( ( 1st `  ( J `  m
) )  e.  S  /\  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) ) )
46 df-dc 836 . . . . . 6  |-  (DECID  ( ( 1st `  ( J `
 m ) )  e.  S  /\  ( 2nd `  ( J `  m ) )  e. 
[_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T )  <->  ( (
( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T )  \/  -.  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) ) )
4745, 46sylibr 134 . . . . 5  |-  ( ( ( ph  /\  m  e.  om )  /\  -.  ( 1st `  ( J `
 m ) )  e.  S )  -> DECID  (
( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
48 exmiddc 837 . . . . . 6  |-  (DECID  ( 1st `  ( J `  m
) )  e.  S  ->  ( ( 1st `  ( J `  m )
)  e.  S  \/  -.  ( 1st `  ( J `  m )
)  e.  S ) )
4913, 48syl 14 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  ( ( 1st `  ( J `  m ) )  e.  S  \/  -.  ( 1st `  ( J `  m ) )  e.  S ) )
5042, 47, 49mpjaodan 799 . . . 4  |-  ( (
ph  /\  m  e.  om )  -> DECID  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
51 2fveq3 5563 . . . . . . . . 9  |-  ( z  =  m  ->  ( 1st `  ( J `  z ) )  =  ( 1st `  ( J `  m )
) )
5251eleq1d 2265 . . . . . . . 8  |-  ( z  =  m  ->  (
( 1st `  ( J `  z )
)  e.  S  <->  ( 1st `  ( J `  m
) )  e.  S
) )
53 2fveq3 5563 . . . . . . . . 9  |-  ( z  =  m  ->  ( 2nd `  ( J `  z ) )  =  ( 2nd `  ( J `  m )
) )
5451fveq2d 5562 . . . . . . . . . 10  |-  ( z  =  m  ->  ( F `  ( 1st `  ( J `  z
) ) )  =  ( F `  ( 1st `  ( J `  m ) ) ) )
5554csbeq1d 3091 . . . . . . . . 9  |-  ( z  =  m  ->  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T  =  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T )
5653, 55eleq12d 2267 . . . . . . . 8  |-  ( z  =  m  ->  (
( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T  <->  ( 2nd `  ( J `  m
) )  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) )
5752, 56anbi12d 473 . . . . . . 7  |-  ( z  =  m  ->  (
( ( 1st `  ( J `  z )
)  e.  S  /\  ( 2nd `  ( J `
 z ) )  e.  [_ ( F `
 ( 1st `  ( J `  z )
) )  /  x ]_ T )  <->  ( ( 1st `  ( J `  m ) )  e.  S  /\  ( 2nd `  ( J `  m
) )  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) ) )
58 ctiunct.u . . . . . . 7  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
5957, 58elrab2 2923 . . . . . 6  |-  ( m  e.  U  <->  ( m  e.  om  /\  ( ( 1st `  ( J `
 m ) )  e.  S  /\  ( 2nd `  ( J `  m ) )  e. 
[_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T ) ) )
60 ibar 301 . . . . . . 7  |-  ( m  e.  om  ->  (
( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T )  <->  ( m  e.  om  /\  ( ( 1st `  ( J `
 m ) )  e.  S  /\  ( 2nd `  ( J `  m ) )  e. 
[_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T ) ) ) )
6160adantl 277 . . . . . 6  |-  ( (
ph  /\  m  e.  om )  ->  ( (
( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T )  <->  ( m  e.  om  /\  ( ( 1st `  ( J `
 m ) )  e.  S  /\  ( 2nd `  ( J `  m ) )  e. 
[_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T ) ) ) )
6259, 61bitr4id 199 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  ( m  e.  U  <->  ( ( 1st `  ( J `  m
) )  e.  S  /\  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) ) )
6362dcbid 839 . . . 4  |-  ( (
ph  /\  m  e.  om )  ->  (DECID  m  e.  U 
<-> DECID  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) ) )
6450, 63mpbird 167 . . 3  |-  ( (
ph  /\  m  e.  om )  -> DECID  m  e.  U
)
6564ralrimiva 2570 . 2  |-  ( ph  ->  A. m  e.  om DECID  m  e.  U )
66 eleq1 2259 . . . 4  |-  ( m  =  n  ->  (
m  e.  U  <->  n  e.  U ) )
6766dcbid 839 . . 3  |-  ( m  =  n  ->  (DECID  m  e.  U  <-> DECID  n  e.  U )
)
6867cbvralv 2729 . 2  |-  ( A. m  e.  om DECID  m  e.  U  <->  A. n  e.  om DECID  n  e.  U )
6965, 68sylib 122 1  |-  ( ph  ->  A. n  e.  om DECID  n  e.  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479   [_csb 3084    C_ wss 3157   omcom 4626    X. cxp 4661   -->wf 5254   -onto->wfo 5256   -1-1-onto->wf1o 5257   ` cfv 5258   1stc1st 6196   2ndc2nd 6197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199
This theorem is referenced by:  ctiunct  12657
  Copyright terms: Public domain W3C validator