ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctlemudc Unicode version

Theorem ctiunctlemudc 12421
Description: Lemma for ctiunct 12424. (Contributed by Jim Kingdon, 28-Oct-2023.)
Hypotheses
Ref Expression
ctiunct.som  |-  ( ph  ->  S  C_  om )
ctiunct.sdc  |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )
ctiunct.f  |-  ( ph  ->  F : S -onto-> A
)
ctiunct.tom  |-  ( (
ph  /\  x  e.  A )  ->  T  C_ 
om )
ctiunct.tdc  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  T )
ctiunct.g  |-  ( (
ph  /\  x  e.  A )  ->  G : T -onto-> B )
ctiunct.j  |-  ( ph  ->  J : om -1-1-onto-> ( om  X.  om ) )
ctiunct.u  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
Assertion
Ref Expression
ctiunctlemudc  |-  ( ph  ->  A. n  e.  om DECID  n  e.  U )
Distinct variable groups:    x, A    n, F, x    z, F, x   
n, J, x    z, J    S, n    z, S    T, n    z, T    U, n    ph, x
Allowed substitution hints:    ph( z, n)    A( z, n)    B( x, z, n)    S( x)    T( x)    U( x, z)    G( x, z, n)

Proof of Theorem ctiunctlemudc
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eleq1 2240 . . . . . . . . 9  |-  ( n  =  ( 1st `  ( J `  m )
)  ->  ( n  e.  S  <->  ( 1st `  ( J `  m )
)  e.  S ) )
21dcbid 838 . . . . . . . 8  |-  ( n  =  ( 1st `  ( J `  m )
)  ->  (DECID  n  e.  S 
<-> DECID  ( 1st `  ( J `
 m ) )  e.  S ) )
3 ctiunct.sdc . . . . . . . . 9  |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )
43adantr 276 . . . . . . . 8  |-  ( (
ph  /\  m  e.  om )  ->  A. n  e.  om DECID  n  e.  S )
5 ctiunct.j . . . . . . . . . . . 12  |-  ( ph  ->  J : om -1-1-onto-> ( om  X.  om ) )
65adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  om )  ->  J : om
-1-1-onto-> ( om  X.  om )
)
7 f1of 5457 . . . . . . . . . . 11  |-  ( J : om -1-1-onto-> ( om  X.  om )  ->  J : om --> ( om  X.  om )
)
86, 7syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  om )  ->  J : om
--> ( om  X.  om ) )
9 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  om )
108, 9ffvelcdmd 5648 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  om )  ->  ( J `  m )  e.  ( om  X.  om )
)
11 xp1st 6160 . . . . . . . . 9  |-  ( ( J `  m )  e.  ( om  X.  om )  ->  ( 1st `  ( J `  m
) )  e.  om )
1210, 11syl 14 . . . . . . . 8  |-  ( (
ph  /\  m  e.  om )  ->  ( 1st `  ( J `  m
) )  e.  om )
132, 4, 12rspcdva 2846 . . . . . . 7  |-  ( (
ph  /\  m  e.  om )  -> DECID  ( 1st `  ( J `  m )
)  e.  S )
1413adantr 276 . . . . . 6  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  -> DECID  ( 1st `  ( J `  m )
)  e.  S )
15 eleq1 2240 . . . . . . . 8  |-  ( n  =  ( 2nd `  ( J `  m )
)  ->  ( n  e.  [_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T 
<->  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) )
1615dcbid 838 . . . . . . 7  |-  ( n  =  ( 2nd `  ( J `  m )
)  ->  (DECID  n  e.  [_ ( F `  ( 1st `  ( J `  m ) ) )  /  x ]_ T  <-> DECID  ( 2nd `  ( J `  m
) )  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) )
17 ctiunct.f . . . . . . . . . . 11  |-  ( ph  ->  F : S -onto-> A
)
18 fof 5434 . . . . . . . . . . 11  |-  ( F : S -onto-> A  ->  F : S --> A )
1917, 18syl 14 . . . . . . . . . 10  |-  ( ph  ->  F : S --> A )
2019ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  F : S --> A )
21 simpr 110 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  ( 1st `  ( J `  m ) )  e.  S )
2220, 21ffvelcdmd 5648 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  ( F `  ( 1st `  ( J `  m
) ) )  e.  A )
23 ctiunct.tdc . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  T )
2423ralrimiva 2550 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  A. n  e.  om DECID  n  e.  T )
2524ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  A. x  e.  A  A. n  e.  om DECID  n  e.  T )
26 nfcv 2319 . . . . . . . . . 10  |-  F/_ x om
27 nfcsb1v 3090 . . . . . . . . . . . 12  |-  F/_ x [_ ( F `  ( 1st `  ( J `  m ) ) )  /  x ]_ T
2827nfcri 2313 . . . . . . . . . . 11  |-  F/ x  n  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T
2928nfdc 1659 . . . . . . . . . 10  |-  F/ xDECID  n  e.  [_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T
3026, 29nfralya 2517 . . . . . . . . 9  |-  F/ x A. n  e.  om DECID  n  e.  [_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T
31 csbeq1a 3066 . . . . . . . . . . . 12  |-  ( x  =  ( F `  ( 1st `  ( J `
 m ) ) )  ->  T  =  [_ ( F `  ( 1st `  ( J `  m ) ) )  /  x ]_ T
)
3231eleq2d 2247 . . . . . . . . . . 11  |-  ( x  =  ( F `  ( 1st `  ( J `
 m ) ) )  ->  ( n  e.  T  <->  n  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) )
3332dcbid 838 . . . . . . . . . 10  |-  ( x  =  ( F `  ( 1st `  ( J `
 m ) ) )  ->  (DECID  n  e.  T 
<-> DECID  n  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
3433ralbidv 2477 . . . . . . . . 9  |-  ( x  =  ( F `  ( 1st `  ( J `
 m ) ) )  ->  ( A. n  e.  om DECID  n  e.  T  <->  A. n  e.  om DECID  n  e.  [_ ( F `  ( 1st `  ( J `  m ) ) )  /  x ]_ T
) )
3530, 34rspc 2835 . . . . . . . 8  |-  ( ( F `  ( 1st `  ( J `  m
) ) )  e.  A  ->  ( A. x  e.  A  A. n  e.  om DECID  n  e.  T  ->  A. n  e.  om DECID  n  e.  [_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T ) )
3622, 25, 35sylc 62 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  A. n  e.  om DECID  n  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T )
3710adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  ( J `  m )  e.  ( om  X.  om ) )
38 xp2nd 6161 . . . . . . . 8  |-  ( ( J `  m )  e.  ( om  X.  om )  ->  ( 2nd `  ( J `  m
) )  e.  om )
3937, 38syl 14 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  ( 2nd `  ( J `  m ) )  e. 
om )
4016, 36, 39rspcdva 2846 . . . . . 6  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  -> DECID  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T )
41 dcan2 934 . . . . . 6  |-  (DECID  ( 1st `  ( J `  m
) )  e.  S  ->  (DECID  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T  -> DECID  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) ) )
4214, 40, 41sylc 62 . . . . 5  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  -> DECID  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
43 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  om )  /\  -.  ( 1st `  ( J `
 m ) )  e.  S )  ->  -.  ( 1st `  ( J `  m )
)  e.  S )
4443intnanrd 932 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  om )  /\  -.  ( 1st `  ( J `
 m ) )  e.  S )  ->  -.  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
4544olcd 734 . . . . . 6  |-  ( ( ( ph  /\  m  e.  om )  /\  -.  ( 1st `  ( J `
 m ) )  e.  S )  -> 
( ( ( 1st `  ( J `  m
) )  e.  S  /\  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T )  \/ 
-.  ( ( 1st `  ( J `  m
) )  e.  S  /\  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) ) )
46 df-dc 835 . . . . . 6  |-  (DECID  ( ( 1st `  ( J `
 m ) )  e.  S  /\  ( 2nd `  ( J `  m ) )  e. 
[_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T )  <->  ( (
( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T )  \/  -.  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) ) )
4745, 46sylibr 134 . . . . 5  |-  ( ( ( ph  /\  m  e.  om )  /\  -.  ( 1st `  ( J `
 m ) )  e.  S )  -> DECID  (
( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
48 exmiddc 836 . . . . . 6  |-  (DECID  ( 1st `  ( J `  m
) )  e.  S  ->  ( ( 1st `  ( J `  m )
)  e.  S  \/  -.  ( 1st `  ( J `  m )
)  e.  S ) )
4913, 48syl 14 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  ( ( 1st `  ( J `  m ) )  e.  S  \/  -.  ( 1st `  ( J `  m ) )  e.  S ) )
5042, 47, 49mpjaodan 798 . . . 4  |-  ( (
ph  /\  m  e.  om )  -> DECID  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
51 2fveq3 5516 . . . . . . . . 9  |-  ( z  =  m  ->  ( 1st `  ( J `  z ) )  =  ( 1st `  ( J `  m )
) )
5251eleq1d 2246 . . . . . . . 8  |-  ( z  =  m  ->  (
( 1st `  ( J `  z )
)  e.  S  <->  ( 1st `  ( J `  m
) )  e.  S
) )
53 2fveq3 5516 . . . . . . . . 9  |-  ( z  =  m  ->  ( 2nd `  ( J `  z ) )  =  ( 2nd `  ( J `  m )
) )
5451fveq2d 5515 . . . . . . . . . 10  |-  ( z  =  m  ->  ( F `  ( 1st `  ( J `  z
) ) )  =  ( F `  ( 1st `  ( J `  m ) ) ) )
5554csbeq1d 3064 . . . . . . . . 9  |-  ( z  =  m  ->  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T  =  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T )
5653, 55eleq12d 2248 . . . . . . . 8  |-  ( z  =  m  ->  (
( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T  <->  ( 2nd `  ( J `  m
) )  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) )
5752, 56anbi12d 473 . . . . . . 7  |-  ( z  =  m  ->  (
( ( 1st `  ( J `  z )
)  e.  S  /\  ( 2nd `  ( J `
 z ) )  e.  [_ ( F `
 ( 1st `  ( J `  z )
) )  /  x ]_ T )  <->  ( ( 1st `  ( J `  m ) )  e.  S  /\  ( 2nd `  ( J `  m
) )  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) ) )
58 ctiunct.u . . . . . . 7  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
5957, 58elrab2 2896 . . . . . 6  |-  ( m  e.  U  <->  ( m  e.  om  /\  ( ( 1st `  ( J `
 m ) )  e.  S  /\  ( 2nd `  ( J `  m ) )  e. 
[_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T ) ) )
60 ibar 301 . . . . . . 7  |-  ( m  e.  om  ->  (
( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T )  <->  ( m  e.  om  /\  ( ( 1st `  ( J `
 m ) )  e.  S  /\  ( 2nd `  ( J `  m ) )  e. 
[_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T ) ) ) )
6160adantl 277 . . . . . 6  |-  ( (
ph  /\  m  e.  om )  ->  ( (
( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T )  <->  ( m  e.  om  /\  ( ( 1st `  ( J `
 m ) )  e.  S  /\  ( 2nd `  ( J `  m ) )  e. 
[_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T ) ) ) )
6259, 61bitr4id 199 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  ( m  e.  U  <->  ( ( 1st `  ( J `  m
) )  e.  S  /\  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) ) )
6362dcbid 838 . . . 4  |-  ( (
ph  /\  m  e.  om )  ->  (DECID  m  e.  U 
<-> DECID  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) ) )
6450, 63mpbird 167 . . 3  |-  ( (
ph  /\  m  e.  om )  -> DECID  m  e.  U
)
6564ralrimiva 2550 . 2  |-  ( ph  ->  A. m  e.  om DECID  m  e.  U )
66 eleq1 2240 . . . 4  |-  ( m  =  n  ->  (
m  e.  U  <->  n  e.  U ) )
6766dcbid 838 . . 3  |-  ( m  =  n  ->  (DECID  m  e.  U  <-> DECID  n  e.  U )
)
6867cbvralv 2703 . 2  |-  ( A. m  e.  om DECID  m  e.  U  <->  A. n  e.  om DECID  n  e.  U )
6965, 68sylib 122 1  |-  ( ph  ->  A. n  e.  om DECID  n  e.  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455   {crab 2459   [_csb 3057    C_ wss 3129   omcom 4586    X. cxp 4621   -->wf 5208   -onto->wfo 5210   -1-1-onto->wf1o 5211   ` cfv 5212   1stc1st 6133   2ndc2nd 6134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-1st 6135  df-2nd 6136
This theorem is referenced by:  ctiunct  12424
  Copyright terms: Public domain W3C validator