ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctlemudc Unicode version

Theorem ctiunctlemudc 11986
Description: Lemma for ctiunct 11989. (Contributed by Jim Kingdon, 28-Oct-2023.)
Hypotheses
Ref Expression
ctiunct.som  |-  ( ph  ->  S  C_  om )
ctiunct.sdc  |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )
ctiunct.f  |-  ( ph  ->  F : S -onto-> A
)
ctiunct.tom  |-  ( (
ph  /\  x  e.  A )  ->  T  C_ 
om )
ctiunct.tdc  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  T )
ctiunct.g  |-  ( (
ph  /\  x  e.  A )  ->  G : T -onto-> B )
ctiunct.j  |-  ( ph  ->  J : om -1-1-onto-> ( om  X.  om ) )
ctiunct.u  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
Assertion
Ref Expression
ctiunctlemudc  |-  ( ph  ->  A. n  e.  om DECID  n  e.  U )
Distinct variable groups:    x, A    n, F, x    z, F, x   
n, J, x    z, J    S, n    z, S    T, n    z, T    U, n    ph, x
Allowed substitution hints:    ph( z, n)    A( z, n)    B( x, z, n)    S( x)    T( x)    U( x, z)    G( x, z, n)

Proof of Theorem ctiunctlemudc
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eleq1 2203 . . . . . . . . 9  |-  ( n  =  ( 1st `  ( J `  m )
)  ->  ( n  e.  S  <->  ( 1st `  ( J `  m )
)  e.  S ) )
21dcbid 824 . . . . . . . 8  |-  ( n  =  ( 1st `  ( J `  m )
)  ->  (DECID  n  e.  S 
<-> DECID  ( 1st `  ( J `
 m ) )  e.  S ) )
3 ctiunct.sdc . . . . . . . . 9  |-  ( ph  ->  A. n  e.  om DECID  n  e.  S )
43adantr 274 . . . . . . . 8  |-  ( (
ph  /\  m  e.  om )  ->  A. n  e.  om DECID  n  e.  S )
5 ctiunct.j . . . . . . . . . . . 12  |-  ( ph  ->  J : om -1-1-onto-> ( om  X.  om ) )
65adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  om )  ->  J : om
-1-1-onto-> ( om  X.  om )
)
7 f1of 5375 . . . . . . . . . . 11  |-  ( J : om -1-1-onto-> ( om  X.  om )  ->  J : om --> ( om  X.  om )
)
86, 7syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  om )  ->  J : om
--> ( om  X.  om ) )
9 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  om )  ->  m  e.  om )
108, 9ffvelrnd 5564 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  om )  ->  ( J `  m )  e.  ( om  X.  om )
)
11 xp1st 6071 . . . . . . . . 9  |-  ( ( J `  m )  e.  ( om  X.  om )  ->  ( 1st `  ( J `  m
) )  e.  om )
1210, 11syl 14 . . . . . . . 8  |-  ( (
ph  /\  m  e.  om )  ->  ( 1st `  ( J `  m
) )  e.  om )
132, 4, 12rspcdva 2798 . . . . . . 7  |-  ( (
ph  /\  m  e.  om )  -> DECID  ( 1st `  ( J `  m )
)  e.  S )
1413adantr 274 . . . . . 6  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  -> DECID  ( 1st `  ( J `  m )
)  e.  S )
15 eleq1 2203 . . . . . . . 8  |-  ( n  =  ( 2nd `  ( J `  m )
)  ->  ( n  e.  [_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T 
<->  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) )
1615dcbid 824 . . . . . . 7  |-  ( n  =  ( 2nd `  ( J `  m )
)  ->  (DECID  n  e.  [_ ( F `  ( 1st `  ( J `  m ) ) )  /  x ]_ T  <-> DECID  ( 2nd `  ( J `  m
) )  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) )
17 ctiunct.f . . . . . . . . . . 11  |-  ( ph  ->  F : S -onto-> A
)
18 fof 5353 . . . . . . . . . . 11  |-  ( F : S -onto-> A  ->  F : S --> A )
1917, 18syl 14 . . . . . . . . . 10  |-  ( ph  ->  F : S --> A )
2019ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  F : S --> A )
21 simpr 109 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  ( 1st `  ( J `  m ) )  e.  S )
2220, 21ffvelrnd 5564 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  ( F `  ( 1st `  ( J `  m
) ) )  e.  A )
23 ctiunct.tdc . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  T )
2423ralrimiva 2508 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  A  A. n  e.  om DECID  n  e.  T )
2524ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  A. x  e.  A  A. n  e.  om DECID  n  e.  T )
26 nfcv 2282 . . . . . . . . . 10  |-  F/_ x om
27 nfcsb1v 3040 . . . . . . . . . . . 12  |-  F/_ x [_ ( F `  ( 1st `  ( J `  m ) ) )  /  x ]_ T
2827nfcri 2276 . . . . . . . . . . 11  |-  F/ x  n  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T
2928nfdc 1638 . . . . . . . . . 10  |-  F/ xDECID  n  e.  [_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T
3026, 29nfralya 2476 . . . . . . . . 9  |-  F/ x A. n  e.  om DECID  n  e.  [_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T
31 csbeq1a 3016 . . . . . . . . . . . 12  |-  ( x  =  ( F `  ( 1st `  ( J `
 m ) ) )  ->  T  =  [_ ( F `  ( 1st `  ( J `  m ) ) )  /  x ]_ T
)
3231eleq2d 2210 . . . . . . . . . . 11  |-  ( x  =  ( F `  ( 1st `  ( J `
 m ) ) )  ->  ( n  e.  T  <->  n  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) )
3332dcbid 824 . . . . . . . . . 10  |-  ( x  =  ( F `  ( 1st `  ( J `
 m ) ) )  ->  (DECID  n  e.  T 
<-> DECID  n  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
3433ralbidv 2438 . . . . . . . . 9  |-  ( x  =  ( F `  ( 1st `  ( J `
 m ) ) )  ->  ( A. n  e.  om DECID  n  e.  T  <->  A. n  e.  om DECID  n  e.  [_ ( F `  ( 1st `  ( J `  m ) ) )  /  x ]_ T
) )
3530, 34rspc 2787 . . . . . . . 8  |-  ( ( F `  ( 1st `  ( J `  m
) ) )  e.  A  ->  ( A. x  e.  A  A. n  e.  om DECID  n  e.  T  ->  A. n  e.  om DECID  n  e.  [_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T ) )
3622, 25, 35sylc 62 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  A. n  e.  om DECID  n  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T )
3710adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  ( J `  m )  e.  ( om  X.  om ) )
38 xp2nd 6072 . . . . . . . 8  |-  ( ( J `  m )  e.  ( om  X.  om )  ->  ( 2nd `  ( J `  m
) )  e.  om )
3937, 38syl 14 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  ->  ( 2nd `  ( J `  m ) )  e. 
om )
4016, 36, 39rspcdva 2798 . . . . . 6  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  -> DECID  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T )
41 dcan 919 . . . . . 6  |-  (DECID  ( 1st `  ( J `  m
) )  e.  S  ->  (DECID  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T  -> DECID  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) ) )
4214, 40, 41sylc 62 . . . . 5  |-  ( ( ( ph  /\  m  e.  om )  /\  ( 1st `  ( J `  m ) )  e.  S )  -> DECID  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
43 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  om )  /\  -.  ( 1st `  ( J `
 m ) )  e.  S )  ->  -.  ( 1st `  ( J `  m )
)  e.  S )
4443intnanrd 918 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  om )  /\  -.  ( 1st `  ( J `
 m ) )  e.  S )  ->  -.  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
4544olcd 724 . . . . . 6  |-  ( ( ( ph  /\  m  e.  om )  /\  -.  ( 1st `  ( J `
 m ) )  e.  S )  -> 
( ( ( 1st `  ( J `  m
) )  e.  S  /\  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T )  \/ 
-.  ( ( 1st `  ( J `  m
) )  e.  S  /\  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) ) )
46 df-dc 821 . . . . . 6  |-  (DECID  ( ( 1st `  ( J `
 m ) )  e.  S  /\  ( 2nd `  ( J `  m ) )  e. 
[_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T )  <->  ( (
( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T )  \/  -.  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) ) )
4745, 46sylibr 133 . . . . 5  |-  ( ( ( ph  /\  m  e.  om )  /\  -.  ( 1st `  ( J `
 m ) )  e.  S )  -> DECID  (
( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
48 exmiddc 822 . . . . . 6  |-  (DECID  ( 1st `  ( J `  m
) )  e.  S  ->  ( ( 1st `  ( J `  m )
)  e.  S  \/  -.  ( 1st `  ( J `  m )
)  e.  S ) )
4913, 48syl 14 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  ( ( 1st `  ( J `  m ) )  e.  S  \/  -.  ( 1st `  ( J `  m ) )  e.  S ) )
5042, 47, 49mpjaodan 788 . . . 4  |-  ( (
ph  /\  m  e.  om )  -> DECID  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) )
51 2fveq3 5434 . . . . . . . . 9  |-  ( z  =  m  ->  ( 1st `  ( J `  z ) )  =  ( 1st `  ( J `  m )
) )
5251eleq1d 2209 . . . . . . . 8  |-  ( z  =  m  ->  (
( 1st `  ( J `  z )
)  e.  S  <->  ( 1st `  ( J `  m
) )  e.  S
) )
53 2fveq3 5434 . . . . . . . . 9  |-  ( z  =  m  ->  ( 2nd `  ( J `  z ) )  =  ( 2nd `  ( J `  m )
) )
5451fveq2d 5433 . . . . . . . . . 10  |-  ( z  =  m  ->  ( F `  ( 1st `  ( J `  z
) ) )  =  ( F `  ( 1st `  ( J `  m ) ) ) )
5554csbeq1d 3014 . . . . . . . . 9  |-  ( z  =  m  ->  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T  =  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T )
5653, 55eleq12d 2211 . . . . . . . 8  |-  ( z  =  m  ->  (
( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T  <->  ( 2nd `  ( J `  m
) )  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) )
5752, 56anbi12d 465 . . . . . . 7  |-  ( z  =  m  ->  (
( ( 1st `  ( J `  z )
)  e.  S  /\  ( 2nd `  ( J `
 z ) )  e.  [_ ( F `
 ( 1st `  ( J `  z )
) )  /  x ]_ T )  <->  ( ( 1st `  ( J `  m ) )  e.  S  /\  ( 2nd `  ( J `  m
) )  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) ) )
58 ctiunct.u . . . . . . 7  |-  U  =  { z  e.  om  |  ( ( 1st `  ( J `  z
) )  e.  S  /\  ( 2nd `  ( J `  z )
)  e.  [_ ( F `  ( 1st `  ( J `  z
) ) )  /  x ]_ T ) }
5957, 58elrab2 2847 . . . . . 6  |-  ( m  e.  U  <->  ( m  e.  om  /\  ( ( 1st `  ( J `
 m ) )  e.  S  /\  ( 2nd `  ( J `  m ) )  e. 
[_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T ) ) )
60 ibar 299 . . . . . . 7  |-  ( m  e.  om  ->  (
( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T )  <->  ( m  e.  om  /\  ( ( 1st `  ( J `
 m ) )  e.  S  /\  ( 2nd `  ( J `  m ) )  e. 
[_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T ) ) ) )
6160adantl 275 . . . . . 6  |-  ( (
ph  /\  m  e.  om )  ->  ( (
( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T )  <->  ( m  e.  om  /\  ( ( 1st `  ( J `
 m ) )  e.  S  /\  ( 2nd `  ( J `  m ) )  e. 
[_ ( F `  ( 1st `  ( J `
 m ) ) )  /  x ]_ T ) ) ) )
6259, 61bitr4id 198 . . . . 5  |-  ( (
ph  /\  m  e.  om )  ->  ( m  e.  U  <->  ( ( 1st `  ( J `  m
) )  e.  S  /\  ( 2nd `  ( J `  m )
)  e.  [_ ( F `  ( 1st `  ( J `  m
) ) )  /  x ]_ T ) ) )
6362dcbid 824 . . . 4  |-  ( (
ph  /\  m  e.  om )  ->  (DECID  m  e.  U 
<-> DECID  ( ( 1st `  ( J `  m )
)  e.  S  /\  ( 2nd `  ( J `
 m ) )  e.  [_ ( F `
 ( 1st `  ( J `  m )
) )  /  x ]_ T ) ) )
6450, 63mpbird 166 . . 3  |-  ( (
ph  /\  m  e.  om )  -> DECID  m  e.  U
)
6564ralrimiva 2508 . 2  |-  ( ph  ->  A. m  e.  om DECID  m  e.  U )
66 eleq1 2203 . . . 4  |-  ( m  =  n  ->  (
m  e.  U  <->  n  e.  U ) )
6766dcbid 824 . . 3  |-  ( m  =  n  ->  (DECID  m  e.  U  <-> DECID  n  e.  U )
)
6867cbvralv 2657 . 2  |-  ( A. m  e.  om DECID  m  e.  U  <->  A. n  e.  om DECID  n  e.  U )
6965, 68sylib 121 1  |-  ( ph  ->  A. n  e.  om DECID  n  e.  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    = wceq 1332    e. wcel 1481   A.wral 2417   {crab 2421   [_csb 3007    C_ wss 3076   omcom 4512    X. cxp 4545   -->wf 5127   -onto->wfo 5129   -1-1-onto->wf1o 5130   ` cfv 5131   1stc1st 6044   2ndc2nd 6045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047
This theorem is referenced by:  ctiunct  11989
  Copyright terms: Public domain W3C validator