| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ctiunctlemu2nd | Unicode version | ||
| Description: Lemma for ctiunct 12811. (Contributed by Jim Kingdon, 28-Oct-2023.) |
| Ref | Expression |
|---|---|
| ctiunct.som |
|
| ctiunct.sdc |
|
| ctiunct.f |
|
| ctiunct.tom |
|
| ctiunct.tdc |
|
| ctiunct.g |
|
| ctiunct.j |
|
| ctiunct.u |
|
| ctiunctlem.n |
|
| Ref | Expression |
|---|---|
| ctiunctlemu2nd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctiunctlem.n |
. . . 4
| |
| 2 | 2fveq3 5581 |
. . . . . . 7
| |
| 3 | 2 | eleq1d 2274 |
. . . . . 6
|
| 4 | 2fveq3 5581 |
. . . . . . 7
| |
| 5 | 2 | fveq2d 5580 |
. . . . . . . 8
|
| 6 | 5 | csbeq1d 3100 |
. . . . . . 7
|
| 7 | 4, 6 | eleq12d 2276 |
. . . . . 6
|
| 8 | 3, 7 | anbi12d 473 |
. . . . 5
|
| 9 | ctiunct.u |
. . . . 5
| |
| 10 | 8, 9 | elrab2 2932 |
. . . 4
|
| 11 | 1, 10 | sylib 122 |
. . 3
|
| 12 | 11 | simprd 114 |
. 2
|
| 13 | 12 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 |
| This theorem is referenced by: ctiunctlemf 12809 |
| Copyright terms: Public domain | W3C validator |