| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ctiunctlemu2nd | Unicode version | ||
| Description: Lemma for ctiunct 12782. (Contributed by Jim Kingdon, 28-Oct-2023.) |
| Ref | Expression |
|---|---|
| ctiunct.som |
|
| ctiunct.sdc |
|
| ctiunct.f |
|
| ctiunct.tom |
|
| ctiunct.tdc |
|
| ctiunct.g |
|
| ctiunct.j |
|
| ctiunct.u |
|
| ctiunctlem.n |
|
| Ref | Expression |
|---|---|
| ctiunctlemu2nd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctiunctlem.n |
. . . 4
| |
| 2 | 2fveq3 5580 |
. . . . . . 7
| |
| 3 | 2 | eleq1d 2273 |
. . . . . 6
|
| 4 | 2fveq3 5580 |
. . . . . . 7
| |
| 5 | 2 | fveq2d 5579 |
. . . . . . . 8
|
| 6 | 5 | csbeq1d 3099 |
. . . . . . 7
|
| 7 | 4, 6 | eleq12d 2275 |
. . . . . 6
|
| 8 | 3, 7 | anbi12d 473 |
. . . . 5
|
| 9 | ctiunct.u |
. . . . 5
| |
| 10 | 8, 9 | elrab2 2931 |
. . . 4
|
| 11 | 1, 10 | sylib 122 |
. . 3
|
| 12 | 11 | simprd 114 |
. 2
|
| 13 | 12 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 |
| This theorem is referenced by: ctiunctlemf 12780 |
| Copyright terms: Public domain | W3C validator |