| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ctiunctlemuom | GIF version | ||
| Description: Lemma for ctiunct 12657. (Contributed by Jim Kingdon, 28-Oct-2023.) | 
| Ref | Expression | 
|---|---|
| ctiunct.som | ⊢ (𝜑 → 𝑆 ⊆ ω) | 
| ctiunct.sdc | ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) | 
| ctiunct.f | ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) | 
| ctiunct.tom | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) | 
| ctiunct.tdc | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) | 
| ctiunct.g | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) | 
| ctiunct.j | ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) | 
| ctiunct.u | ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} | 
| Ref | Expression | 
|---|---|
| ctiunctlemuom | ⊢ (𝜑 → 𝑈 ⊆ ω) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ctiunct.u | . . 3 ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} | |
| 2 | ssrab2 3268 | . . 3 ⊢ {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} ⊆ ω | |
| 3 | 1, 2 | eqsstri 3215 | . 2 ⊢ 𝑈 ⊆ ω | 
| 4 | 3 | a1i 9 | 1 ⊢ (𝜑 → 𝑈 ⊆ ω) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ∀wral 2475 {crab 2479 ⦋csb 3084 ⊆ wss 3157 ωcom 4626 × cxp 4661 –onto→wfo 5256 –1-1-onto→wf1o 5257 ‘cfv 5258 1st c1st 6196 2nd c2nd 6197 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: ctiunct 12657 | 
| Copyright terms: Public domain | W3C validator |