| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ctiunctlemuom | GIF version | ||
| Description: Lemma for ctiunct 13011. (Contributed by Jim Kingdon, 28-Oct-2023.) |
| Ref | Expression |
|---|---|
| ctiunct.som | ⊢ (𝜑 → 𝑆 ⊆ ω) |
| ctiunct.sdc | ⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) |
| ctiunct.f | ⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) |
| ctiunct.tom | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) |
| ctiunct.tdc | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) |
| ctiunct.g | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) |
| ctiunct.j | ⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) |
| ctiunct.u | ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} |
| Ref | Expression |
|---|---|
| ctiunctlemuom | ⊢ (𝜑 → 𝑈 ⊆ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctiunct.u | . . 3 ⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} | |
| 2 | ssrab2 3309 | . . 3 ⊢ {𝑧 ∈ ω ∣ ((1st ‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} ⊆ ω | |
| 3 | 1, 2 | eqsstri 3256 | . 2 ⊢ 𝑈 ⊆ ω |
| 4 | 3 | a1i 9 | 1 ⊢ (𝜑 → 𝑈 ⊆ ω) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∀wral 2508 {crab 2512 ⦋csb 3124 ⊆ wss 3197 ωcom 4682 × cxp 4717 –onto→wfo 5316 –1-1-onto→wf1o 5317 ‘cfv 5318 1st c1st 6284 2nd c2nd 6285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ctiunct 13011 |
| Copyright terms: Public domain | W3C validator |