ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunct Unicode version

Theorem ctiunct 12657
Description: A sequence of enumerations gives an enumeration of the union. We refer to "sequence of enumerations" rather than "countably many countable sets" because the hypothesis provides more than countability for each  B ( x ): it refers to  B ( x ) together with the  G ( x ) which enumerates it. Theorem 8.1.19 of [AczelRathjen], p. 74.

For "countably many countable sets" the key hypothesis would be  ( ph  /\  x  e.  A )  ->  E. g g : om -onto-> ( B 1o ). This is almost omiunct 12661 (which uses countable choice) although that is for a countably infinite collection not any countable collection.

Compare with the case of two sets instead of countably many, as seen at unct 12659, which says that the union of two countable sets is countable .

The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 12612) and using the first number to map to an element  x of  A and the second number to map to an element of B(x) . In this way we are able to map to every element of  U_ x  e.  A B. Although it would be possible to work directly with countability expressed as  F : om -onto-> ( A 1o ), we instead use functions from subsets of the natural numbers via ctssdccl 7177 and ctssdc 7179.

(Contributed by Jim Kingdon, 31-Oct-2023.)

Hypotheses
Ref Expression
ctiunct.a  |-  ( ph  ->  F : om -onto-> ( A 1o ) )
ctiunct.b  |-  ( (
ph  /\  x  e.  A )  ->  G : om -onto-> ( B 1o ) )
Assertion
Ref Expression
ctiunct  |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
Distinct variable groups:    A, h, x    B, h    x, F    ph, x
Allowed substitution hints:    ph( h)    B( x)    F( h)    G( x, h)

Proof of Theorem ctiunct
Dummy variables  j  k  n  u  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpomen 12612 . . . . 5  |-  ( om 
X.  om )  ~~  om
21ensymi 6841 . . . 4  |-  om  ~~  ( om  X.  om )
3 bren 6806 . . . 4  |-  ( om 
~~  ( om  X.  om )  <->  E. j  j : om -1-1-onto-> ( om  X.  om ) )
42, 3mpbi 145 . . 3  |-  E. j 
j : om -1-1-onto-> ( om  X.  om )
54a1i 9 . 2  |-  ( ph  ->  E. j  j : om -1-1-onto-> ( om  X.  om ) )
6 ctiunct.a . . . . . . . 8  |-  ( ph  ->  F : om -onto-> ( A 1o ) )
7 eqid 2196 . . . . . . . 8  |-  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  =  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }
8 eqid 2196 . . . . . . . 8  |-  ( `'inl 
o.  F )  =  ( `'inl  o.  F
)
96, 7, 8ctssdccl 7177 . . . . . . 7  |-  ( ph  ->  ( { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  C_  om  /\  ( `'inl  o.  F ) : { w  e.  om  |  ( F `  w )  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { w  e.  om  |  ( F `  w )  e.  (inl " A ) } ) )
109simp1d 1011 . . . . . 6  |-  ( ph  ->  { w  e.  om  |  ( F `  w )  e.  (inl " A ) }  C_  om )
1110adantr 276 . . . . 5  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  C_  om )
129simp3d 1013 . . . . . 6  |-  ( ph  ->  A. n  e.  om DECID  n  e.  { w  e.  om  |  ( F `  w )  e.  (inl " A ) } )
1312adantr 276 . . . . 5  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  A. n  e.  om DECID  n  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) } )
149simp2d 1012 . . . . . 6  |-  ( ph  ->  ( `'inl  o.  F
) : { w  e.  om  |  ( F `
 w )  e.  (inl " A ) } -onto-> A )
1514adantr 276 . . . . 5  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  ( `'inl  o.  F ) : {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) } -onto-> A
)
16 ctiunct.b . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  G : om -onto-> ( B 1o ) )
17 eqid 2196 . . . . . . . 8  |-  { w  e.  om  |  ( G `
 w )  e.  (inl " B ) }  =  { w  e.  om  |  ( G `
 w )  e.  (inl " B ) }
18 eqid 2196 . . . . . . . 8  |-  ( `'inl 
o.  G )  =  ( `'inl  o.  G
)
1916, 17, 18ctssdccl 7177 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( { w  e.  om  |  ( G `  w )  e.  (inl " B ) }  C_  om 
/\  ( `'inl  o.  G ) : {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } -onto-> B  /\  A. n  e.  om DECID  n  e.  { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) )
2019simp1d 1011 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  { w  e.  om  |  ( G `
 w )  e.  (inl " B ) }  C_  om )
2120adantlr 477 . . . . 5  |-  ( ( ( ph  /\  j : om -1-1-onto-> ( om  X.  om ) )  /\  x  e.  A )  ->  { w  e.  om  |  ( G `
 w )  e.  (inl " B ) }  C_  om )
2219simp3d 1013 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  { w  e.  om  |  ( G `
 w )  e.  (inl " B ) } )
2322adantlr 477 . . . . 5  |-  ( ( ( ph  /\  j : om -1-1-onto-> ( om  X.  om ) )  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  { w  e.  om  |  ( G `
 w )  e.  (inl " B ) } )
2419simp2d 1012 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( `'inl  o.  G ) : { w  e.  om  |  ( G `  w )  e.  (inl " B ) } -onto-> B
)
2524adantlr 477 . . . . 5  |-  ( ( ( ph  /\  j : om -1-1-onto-> ( om  X.  om ) )  /\  x  e.  A )  ->  ( `'inl  o.  G ) : { w  e.  om  |  ( G `  w )  e.  (inl " B ) } -onto-> B
)
26 simpr 110 . . . . 5  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  j : om
-1-1-onto-> ( om  X.  om )
)
27 eqid 2196 . . . . 5  |-  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  =  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }
2811, 13, 15, 21, 23, 25, 26, 27ctiunctlemuom 12653 . . . 4  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  { z  e.  om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  C_  om )
29 eqid 2196 . . . . . 6  |-  ( n  e.  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) )  =  ( n  e.  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) )
30 nfv 1542 . . . . . . . . 9  |-  F/ x
( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }
31 nfcsb1v 3117 . . . . . . . . . 10  |-  F/_ x [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) }
3231nfel2 2352 . . . . . . . . 9  |-  F/ x
( 2nd `  (
j `  z )
)  e.  [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  z
) ) )  /  x ]_ { w  e. 
om  |  ( G `
 w )  e.  (inl " B ) }
3330, 32nfan 1579 . . . . . . . 8  |-  F/ x
( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } )
34 nfcv 2339 . . . . . . . 8  |-  F/_ x om
3533, 34nfrabw 2678 . . . . . . 7  |-  F/_ x { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) }
36 nfcsb1v 3117 . . . . . . . 8  |-  F/_ x [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  n ) ) )  /  x ]_ ( `'inl  o.  G )
37 nfcv 2339 . . . . . . . 8  |-  F/_ x
( 2nd `  (
j `  n )
)
3836, 37nffv 5568 . . . . . . 7  |-  F/_ x
( [_ ( ( `'inl 
o.  F ) `  ( 1st `  ( j `
 n ) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `
 n ) ) )
3935, 38nfmpt 4125 . . . . . 6  |-  F/_ x
( n  e.  {
z  e.  om  | 
( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) )
4011, 13, 15, 21, 23, 25, 26, 27, 29, 39, 35ctiunctlemfo 12656 . . . . 5  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  ( n  e.  { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) ) : { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B )
41 omex 4629 . . . . . . . 8  |-  om  e.  _V
4241rabex 4177 . . . . . . 7  |-  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  e.  _V
4342mptex 5788 . . . . . 6  |-  ( n  e.  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) )  e.  _V
44 foeq1 5476 . . . . . 6  |-  ( k  =  ( n  e. 
{ z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) )  ->  ( k : { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B 
<->  ( n  e.  {
z  e.  om  | 
( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) ) : { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B ) )
4543, 44spcev 2859 . . . . 5  |-  ( ( n  e.  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) ) : { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B  ->  E. k  k : { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B )
4640, 45syl 14 . . . 4  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  E. k 
k : { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B )
4711, 13, 15, 21, 23, 25, 26, 27ctiunctlemudc 12654 . . . 4  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  A. n  e.  om DECID  n  e.  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } )
48 sseq1 3206 . . . . . 6  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  ( u  C_ 
om 
<->  { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) }  C_  om )
)
49 foeq2 5477 . . . . . . 7  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  ( k : u -onto-> U_ x  e.  A  B  <->  k : { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B ) )
5049exbidv 1839 . . . . . 6  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  ( E. k  k : u
-onto->
U_ x  e.  A  B 
<->  E. k  k : { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B ) )
51 eleq2 2260 . . . . . . . 8  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  ( n  e.  u  <->  n  e.  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } ) )
5251dcbid 839 . . . . . . 7  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  (DECID  n  e.  u 
<-> DECID  n  e.  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } ) )
5352ralbidv 2497 . . . . . 6  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  ( A. n  e.  om DECID  n  e.  u  <->  A. n  e.  om DECID  n  e.  { z  e.  om  | 
( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } ) )
5448, 50, 533anbi123d 1323 . . . . 5  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  ( (
u  C_  om  /\  E. k  k : u
-onto->
U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  u )  <-> 
( { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  C_  om  /\  E. k  k : {
z  e.  om  | 
( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } ) ) )
5542, 54spcev 2859 . . . 4  |-  ( ( { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) }  C_  om  /\  E. k  k : {
z  e.  om  | 
( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } )  ->  E. u
( u  C_  om  /\  E. k  k : u
-onto->
U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  u ) )
5628, 46, 47, 55syl3anc 1249 . . 3  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  E. u
( u  C_  om  /\  E. k  k : u
-onto->
U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  u ) )
57 ctssdc 7179 . . . 4  |-  ( E. u ( u  C_  om 
/\  E. k  k : u -onto-> U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  u )  <->  E. k  k : om -onto-> ( U_ x  e.  A  B 1o ) )
58 foeq1 5476 . . . . 5  |-  ( k  =  h  ->  (
k : om -onto-> ( U_ x  e.  A  B 1o )  <->  h : om -onto-> ( U_ x  e.  A  B 1o ) ) )
5958cbvexv 1933 . . . 4  |-  ( E. k  k : om -onto->
( U_ x  e.  A  B 1o )  <->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
6057, 59bitri 184 . . 3  |-  ( E. u ( u  C_  om 
/\  E. k  k : u -onto-> U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  u )  <->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
6156, 60sylib 122 . 2  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
625, 61exlimddv 1913 1  |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   {crab 2479   [_csb 3084    C_ wss 3157   U_ciun 3916   class class class wbr 4033    |-> cmpt 4094   omcom 4626    X. cxp 4661   `'ccnv 4662   "cima 4666    o. ccom 4667   -onto->wfo 5256   -1-1-onto->wf1o 5257   ` cfv 5258   1stc1st 6196   2ndc2nd 6197   1oc1o 6467    ~~ cen 6797   ⊔ cdju 7103  inlcinl 7111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-en 6800  df-dju 7104  df-inl 7113  df-inr 7114  df-case 7150  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-dvds 11953
This theorem is referenced by:  ctiunctal  12658  unct  12659
  Copyright terms: Public domain W3C validator