ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunct Unicode version

Theorem ctiunct 12408
Description: A sequence of enumerations gives an enumeration of the union. We refer to "sequence of enumerations" rather than "countably many countable sets" because the hypothesis provides more than countability for each  B ( x ): it refers to  B ( x ) together with the  G ( x ) which enumerates it. Theorem 8.1.19 of [AczelRathjen], p. 74.

For "countably many countable sets" the key hypothesis would be  ( ph  /\  x  e.  A )  ->  E. g g : om -onto-> ( B 1o ). This is almost omiunct 12412 (which uses countable choice) although that is for a countably infinite collection not any countable collection.

Compare with the case of two sets instead of countably many, as seen at unct 12410, which says that the union of two countable sets is countable .

The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 12363) and using the first number to map to an element  x of  A and the second number to map to an element of B(x) . In this way we are able to map to every element of  U_ x  e.  A B. Although it would be possible to work directly with countability expressed as  F : om -onto-> ( A 1o ), we instead use functions from subsets of the natural numbers via ctssdccl 7100 and ctssdc 7102.

(Contributed by Jim Kingdon, 31-Oct-2023.)

Hypotheses
Ref Expression
ctiunct.a  |-  ( ph  ->  F : om -onto-> ( A 1o ) )
ctiunct.b  |-  ( (
ph  /\  x  e.  A )  ->  G : om -onto-> ( B 1o ) )
Assertion
Ref Expression
ctiunct  |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
Distinct variable groups:    A, h, x    B, h    x, F    ph, x
Allowed substitution hints:    ph( h)    B( x)    F( h)    G( x, h)

Proof of Theorem ctiunct
Dummy variables  j  k  n  u  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpomen 12363 . . . . 5  |-  ( om 
X.  om )  ~~  om
21ensymi 6772 . . . 4  |-  om  ~~  ( om  X.  om )
3 bren 6737 . . . 4  |-  ( om 
~~  ( om  X.  om )  <->  E. j  j : om -1-1-onto-> ( om  X.  om ) )
42, 3mpbi 145 . . 3  |-  E. j 
j : om -1-1-onto-> ( om  X.  om )
54a1i 9 . 2  |-  ( ph  ->  E. j  j : om -1-1-onto-> ( om  X.  om ) )
6 ctiunct.a . . . . . . . 8  |-  ( ph  ->  F : om -onto-> ( A 1o ) )
7 eqid 2175 . . . . . . . 8  |-  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  =  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }
8 eqid 2175 . . . . . . . 8  |-  ( `'inl 
o.  F )  =  ( `'inl  o.  F
)
96, 7, 8ctssdccl 7100 . . . . . . 7  |-  ( ph  ->  ( { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  C_  om  /\  ( `'inl  o.  F ) : { w  e.  om  |  ( F `  w )  e.  (inl " A ) } -onto-> A  /\  A. n  e.  om DECID  n  e.  { w  e.  om  |  ( F `  w )  e.  (inl " A ) } ) )
109simp1d 1009 . . . . . 6  |-  ( ph  ->  { w  e.  om  |  ( F `  w )  e.  (inl " A ) }  C_  om )
1110adantr 276 . . . . 5  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  C_  om )
129simp3d 1011 . . . . . 6  |-  ( ph  ->  A. n  e.  om DECID  n  e.  { w  e.  om  |  ( F `  w )  e.  (inl " A ) } )
1312adantr 276 . . . . 5  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  A. n  e.  om DECID  n  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) } )
149simp2d 1010 . . . . . 6  |-  ( ph  ->  ( `'inl  o.  F
) : { w  e.  om  |  ( F `
 w )  e.  (inl " A ) } -onto-> A )
1514adantr 276 . . . . 5  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  ( `'inl  o.  F ) : {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) } -onto-> A
)
16 ctiunct.b . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  G : om -onto-> ( B 1o ) )
17 eqid 2175 . . . . . . . 8  |-  { w  e.  om  |  ( G `
 w )  e.  (inl " B ) }  =  { w  e.  om  |  ( G `
 w )  e.  (inl " B ) }
18 eqid 2175 . . . . . . . 8  |-  ( `'inl 
o.  G )  =  ( `'inl  o.  G
)
1916, 17, 18ctssdccl 7100 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( { w  e.  om  |  ( G `  w )  e.  (inl " B ) }  C_  om 
/\  ( `'inl  o.  G ) : {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } -onto-> B  /\  A. n  e.  om DECID  n  e.  { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) )
2019simp1d 1009 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  { w  e.  om  |  ( G `
 w )  e.  (inl " B ) }  C_  om )
2120adantlr 477 . . . . 5  |-  ( ( ( ph  /\  j : om -1-1-onto-> ( om  X.  om ) )  /\  x  e.  A )  ->  { w  e.  om  |  ( G `
 w )  e.  (inl " B ) }  C_  om )
2219simp3d 1011 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  { w  e.  om  |  ( G `
 w )  e.  (inl " B ) } )
2322adantlr 477 . . . . 5  |-  ( ( ( ph  /\  j : om -1-1-onto-> ( om  X.  om ) )  /\  x  e.  A )  ->  A. n  e.  om DECID  n  e.  { w  e.  om  |  ( G `
 w )  e.  (inl " B ) } )
2419simp2d 1010 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  ( `'inl  o.  G ) : { w  e.  om  |  ( G `  w )  e.  (inl " B ) } -onto-> B
)
2524adantlr 477 . . . . 5  |-  ( ( ( ph  /\  j : om -1-1-onto-> ( om  X.  om ) )  /\  x  e.  A )  ->  ( `'inl  o.  G ) : { w  e.  om  |  ( G `  w )  e.  (inl " B ) } -onto-> B
)
26 simpr 110 . . . . 5  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  j : om
-1-1-onto-> ( om  X.  om )
)
27 eqid 2175 . . . . 5  |-  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  =  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }
2811, 13, 15, 21, 23, 25, 26, 27ctiunctlemuom 12404 . . . 4  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  { z  e.  om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  C_  om )
29 eqid 2175 . . . . . 6  |-  ( n  e.  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) )  =  ( n  e.  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) )
30 nfv 1526 . . . . . . . . 9  |-  F/ x
( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }
31 nfcsb1v 3088 . . . . . . . . . 10  |-  F/_ x [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) }
3231nfel2 2330 . . . . . . . . 9  |-  F/ x
( 2nd `  (
j `  z )
)  e.  [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  z
) ) )  /  x ]_ { w  e. 
om  |  ( G `
 w )  e.  (inl " B ) }
3330, 32nfan 1563 . . . . . . . 8  |-  F/ x
( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } )
34 nfcv 2317 . . . . . . . 8  |-  F/_ x om
3533, 34nfrabxy 2655 . . . . . . 7  |-  F/_ x { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) }
36 nfcsb1v 3088 . . . . . . . 8  |-  F/_ x [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  n ) ) )  /  x ]_ ( `'inl  o.  G )
37 nfcv 2317 . . . . . . . 8  |-  F/_ x
( 2nd `  (
j `  n )
)
3836, 37nffv 5517 . . . . . . 7  |-  F/_ x
( [_ ( ( `'inl 
o.  F ) `  ( 1st `  ( j `
 n ) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `
 n ) ) )
3935, 38nfmpt 4090 . . . . . 6  |-  F/_ x
( n  e.  {
z  e.  om  | 
( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) )
4011, 13, 15, 21, 23, 25, 26, 27, 29, 39, 35ctiunctlemfo 12407 . . . . 5  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  ( n  e.  { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) ) : { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B )
41 omex 4586 . . . . . . . 8  |-  om  e.  _V
4241rabex 4142 . . . . . . 7  |-  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  e.  _V
4342mptex 5734 . . . . . 6  |-  ( n  e.  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) )  e.  _V
44 foeq1 5426 . . . . . 6  |-  ( k  =  ( n  e. 
{ z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) )  ->  ( k : { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B 
<->  ( n  e.  {
z  e.  om  | 
( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) ) : { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B ) )
4543, 44spcev 2830 . . . . 5  |-  ( ( n  e.  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  |->  ( [_ (
( `'inl  o.  F
) `  ( 1st `  ( j `  n
) ) )  /  x ]_ ( `'inl  o.  G ) `  ( 2nd `  ( j `  n ) ) ) ) : { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B  ->  E. k  k : { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B )
4640, 45syl 14 . . . 4  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  E. k 
k : { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B )
4711, 13, 15, 21, 23, 25, 26, 27ctiunctlemudc 12405 . . . 4  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  A. n  e.  om DECID  n  e.  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } )
48 sseq1 3176 . . . . . 6  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  ( u  C_ 
om 
<->  { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) }  C_  om )
)
49 foeq2 5427 . . . . . . 7  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  ( k : u -onto-> U_ x  e.  A  B  <->  k : { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B ) )
5049exbidv 1823 . . . . . 6  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  ( E. k  k : u
-onto->
U_ x  e.  A  B 
<->  E. k  k : { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B ) )
51 eleq2 2239 . . . . . . . 8  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  ( n  e.  u  <->  n  e.  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } ) )
5251dcbid 838 . . . . . . 7  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  (DECID  n  e.  u 
<-> DECID  n  e.  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } ) )
5352ralbidv 2475 . . . . . 6  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  ( A. n  e.  om DECID  n  e.  u  <->  A. n  e.  om DECID  n  e.  { z  e.  om  | 
( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } ) )
5448, 50, 533anbi123d 1312 . . . . 5  |-  ( u  =  { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  ->  ( (
u  C_  om  /\  E. k  k : u
-onto->
U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  u )  <-> 
( { z  e. 
om  |  ( ( 1st `  ( j `
 z ) )  e.  { w  e. 
om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) }  C_  om  /\  E. k  k : {
z  e.  om  | 
( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } ) ) )
5542, 54spcev 2830 . . . 4  |-  ( ( { z  e.  om  |  ( ( 1st `  ( j `  z
) )  e.  {
w  e.  om  | 
( F `  w
)  e.  (inl " A ) }  /\  ( 2nd `  ( j `
 z ) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `
 z ) ) )  /  x ]_ { w  e.  om  |  ( G `  w )  e.  (inl " B ) } ) }  C_  om  /\  E. k  k : {
z  e.  om  | 
( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } -onto-> U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  { z  e.  om  |  ( ( 1st `  (
j `  z )
)  e.  { w  e.  om  |  ( F `
 w )  e.  (inl " A ) }  /\  ( 2nd `  ( j `  z
) )  e.  [_ ( ( `'inl  o.  F ) `  ( 1st `  ( j `  z ) ) )  /  x ]_ {
w  e.  om  | 
( G `  w
)  e.  (inl " B ) } ) } )  ->  E. u
( u  C_  om  /\  E. k  k : u
-onto->
U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  u ) )
5628, 46, 47, 55syl3anc 1238 . . 3  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  E. u
( u  C_  om  /\  E. k  k : u
-onto->
U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  u ) )
57 ctssdc 7102 . . . 4  |-  ( E. u ( u  C_  om 
/\  E. k  k : u -onto-> U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  u )  <->  E. k  k : om -onto-> ( U_ x  e.  A  B 1o ) )
58 foeq1 5426 . . . . 5  |-  ( k  =  h  ->  (
k : om -onto-> ( U_ x  e.  A  B 1o )  <->  h : om -onto-> ( U_ x  e.  A  B 1o ) ) )
5958cbvexv 1916 . . . 4  |-  ( E. k  k : om -onto->
( U_ x  e.  A  B 1o )  <->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
6057, 59bitri 184 . . 3  |-  ( E. u ( u  C_  om 
/\  E. k  k : u -onto-> U_ x  e.  A  B  /\  A. n  e. 
om DECID 
n  e.  u )  <->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
6156, 60sylib 122 . 2  |-  ( (
ph  /\  j : om
-1-1-onto-> ( om  X.  om )
)  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
625, 61exlimddv 1896 1  |-  ( ph  ->  E. h  h : om -onto-> ( U_ x  e.  A  B 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 834    /\ w3a 978    = wceq 1353   E.wex 1490    e. wcel 2146   A.wral 2453   {crab 2457   [_csb 3055    C_ wss 3127   U_ciun 3882   class class class wbr 3998    |-> cmpt 4059   omcom 4583    X. cxp 4618   `'ccnv 4619   "cima 4623    o. ccom 4624   -onto->wfo 5206   -1-1-onto->wf1o 5207   ` cfv 5208   1stc1st 6129   2ndc2nd 6130   1oc1o 6400    ~~ cen 6728   ⊔ cdju 7026  inlcinl 7034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-1o 6407  df-er 6525  df-en 6731  df-dju 7027  df-inl 7036  df-inr 7037  df-case 7073  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-n0 9150  df-z 9227  df-uz 9502  df-q 9593  df-rp 9625  df-fz 9980  df-fl 10240  df-mod 10293  df-seqfrec 10416  df-exp 10490  df-dvds 11763
This theorem is referenced by:  ctiunctal  12409  unct  12410
  Copyright terms: Public domain W3C validator