Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctiunct | Unicode version |
Description: A sequence of
enumerations gives an enumeration of the union. We refer
to "sequence of enumerations" rather than "countably many
countable
sets" because the hypothesis provides more than countability for
each
: it refers to together with the
which enumerates it. Theorem 8.1.19 of [AczelRathjen], p. 74.
For "countably many countable sets" the key hypothesis would be ⊔ . This is almost omiunct 12399 (which uses countable choice) although that is for a countably infinite collection not any countable collection. Compare with the case of two sets instead of countably many, as seen at unct 12397, which says that the union of two countable sets is countable . The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 12350) and using the first number to map to an element of and the second number to map to an element of B(x) . In this way we are able to map to every element of . Although it would be possible to work directly with countability expressed as ⊔ , we instead use functions from subsets of the natural numbers via ctssdccl 7088 and ctssdc 7090. (Contributed by Jim Kingdon, 31-Oct-2023.) |
Ref | Expression |
---|---|
ctiunct.a | ⊔ |
ctiunct.b | ⊔ |
Ref | Expression |
---|---|
ctiunct | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpomen 12350 | . . . . 5 | |
2 | 1 | ensymi 6760 | . . . 4 |
3 | bren 6725 | . . . 4 | |
4 | 2, 3 | mpbi 144 | . . 3 |
5 | 4 | a1i 9 | . 2 |
6 | ctiunct.a | . . . . . . . 8 ⊔ | |
7 | eqid 2170 | . . . . . . . 8 inl inl | |
8 | eqid 2170 | . . . . . . . 8 inl inl | |
9 | 6, 7, 8 | ctssdccl 7088 | . . . . . . 7 inl inl inl DECID inl |
10 | 9 | simp1d 1004 | . . . . . 6 inl |
11 | 10 | adantr 274 | . . . . 5 inl |
12 | 9 | simp3d 1006 | . . . . . 6 DECID inl |
13 | 12 | adantr 274 | . . . . 5 DECID inl |
14 | 9 | simp2d 1005 | . . . . . 6 inl inl |
15 | 14 | adantr 274 | . . . . 5 inl inl |
16 | ctiunct.b | . . . . . . . 8 ⊔ | |
17 | eqid 2170 | . . . . . . . 8 inl inl | |
18 | eqid 2170 | . . . . . . . 8 inl inl | |
19 | 16, 17, 18 | ctssdccl 7088 | . . . . . . 7 inl inl inl DECID inl |
20 | 19 | simp1d 1004 | . . . . . 6 inl |
21 | 20 | adantlr 474 | . . . . 5 inl |
22 | 19 | simp3d 1006 | . . . . . 6 DECID inl |
23 | 22 | adantlr 474 | . . . . 5 DECID inl |
24 | 19 | simp2d 1005 | . . . . . 6 inl inl |
25 | 24 | adantlr 474 | . . . . 5 inl inl |
26 | simpr 109 | . . . . 5 | |
27 | eqid 2170 | . . . . 5 inl inl inl inl inl inl | |
28 | 11, 13, 15, 21, 23, 25, 26, 27 | ctiunctlemuom 12391 | . . . 4 inl inl inl |
29 | eqid 2170 | . . . . . 6 inl inl inl inl inl inl inl inl inl inl | |
30 | nfv 1521 | . . . . . . . . 9 inl | |
31 | nfcsb1v 3082 | . . . . . . . . . 10 inl inl | |
32 | 31 | nfel2 2325 | . . . . . . . . 9 inl inl |
33 | 30, 32 | nfan 1558 | . . . . . . . 8 inl inl inl |
34 | nfcv 2312 | . . . . . . . 8 | |
35 | 33, 34 | nfrabxy 2650 | . . . . . . 7 inl inl inl |
36 | nfcsb1v 3082 | . . . . . . . 8 inl inl | |
37 | nfcv 2312 | . . . . . . . 8 | |
38 | 36, 37 | nffv 5506 | . . . . . . 7 inl inl |
39 | 35, 38 | nfmpt 4081 | . . . . . 6 inl inl inl inl inl |
40 | 11, 13, 15, 21, 23, 25, 26, 27, 29, 39, 35 | ctiunctlemfo 12394 | . . . . 5 inl inl inl inl inl inl inl inl |
41 | omex 4577 | . . . . . . . 8 | |
42 | 41 | rabex 4133 | . . . . . . 7 inl inl inl |
43 | 42 | mptex 5722 | . . . . . 6 inl inl inl inl inl |
44 | foeq1 5416 | . . . . . 6 inl inl inl inl inl inl inl inl inl inl inl inl inl inl inl inl | |
45 | 43, 44 | spcev 2825 | . . . . 5 inl inl inl inl inl inl inl inl inl inl inl |
46 | 40, 45 | syl 14 | . . . 4 inl inl inl |
47 | 11, 13, 15, 21, 23, 25, 26, 27 | ctiunctlemudc 12392 | . . . 4 DECID inl inl inl |
48 | sseq1 3170 | . . . . . 6 inl inl inl inl inl inl | |
49 | foeq2 5417 | . . . . . . 7 inl inl inl inl inl inl | |
50 | 49 | exbidv 1818 | . . . . . 6 inl inl inl inl inl inl |
51 | eleq2 2234 | . . . . . . . 8 inl inl inl inl inl inl | |
52 | 51 | dcbid 833 | . . . . . . 7 inl inl inl DECID DECID inl inl inl |
53 | 52 | ralbidv 2470 | . . . . . 6 inl inl inl DECID DECID inl inl inl |
54 | 48, 50, 53 | 3anbi123d 1307 | . . . . 5 inl inl inl DECID inl inl inl inl inl inl DECID inl inl inl |
55 | 42, 54 | spcev 2825 | . . . 4 inl inl inl inl inl inl DECID inl inl inl DECID |
56 | 28, 46, 47, 55 | syl3anc 1233 | . . 3 DECID |
57 | ctssdc 7090 | . . . 4 DECID ⊔ | |
58 | foeq1 5416 | . . . . 5 ⊔ ⊔ | |
59 | 58 | cbvexv 1911 | . . . 4 ⊔ ⊔ |
60 | 57, 59 | bitri 183 | . . 3 DECID ⊔ |
61 | 56, 60 | sylib 121 | . 2 ⊔ |
62 | 5, 61 | exlimddv 1891 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 DECID wdc 829 w3a 973 wceq 1348 wex 1485 wcel 2141 wral 2448 crab 2452 csb 3049 wss 3121 ciun 3873 class class class wbr 3989 cmpt 4050 com 4574 cxp 4609 ccnv 4610 cima 4614 ccom 4615 wfo 5196 wf1o 5197 cfv 5198 c1st 6117 c2nd 6118 c1o 6388 cen 6716 ⊔ cdju 7014 inlcinl 7022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-xor 1371 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-1o 6395 df-er 6513 df-en 6719 df-dju 7015 df-inl 7024 df-inr 7025 df-case 7061 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-dvds 11750 |
This theorem is referenced by: ctiunctal 12396 unct 12397 |
Copyright terms: Public domain | W3C validator |