Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctiunct | Unicode version |
Description: A sequence of
enumerations gives an enumeration of the union. We refer
to "sequence of enumerations" rather than "countably many
countable
sets" because the hypothesis provides more than countability for
each
: it refers to together with the
which enumerates it. Theorem 8.1.19 of [AczelRathjen], p. 74.
For "countably many countable sets" the key hypothesis would be ⊔ . This is almost omiunct 12377 (which uses countable choice) although that is for a countably infinite collection not any countable collection. Compare with the case of two sets instead of countably many, as seen at unct 12375, which says that the union of two countable sets is countable . The proof proceeds by mapping a natural number to a pair of natural numbers (by xpomen 12328) and using the first number to map to an element of and the second number to map to an element of B(x) . In this way we are able to map to every element of . Although it would be possible to work directly with countability expressed as ⊔ , we instead use functions from subsets of the natural numbers via ctssdccl 7076 and ctssdc 7078. (Contributed by Jim Kingdon, 31-Oct-2023.) |
Ref | Expression |
---|---|
ctiunct.a | ⊔ |
ctiunct.b | ⊔ |
Ref | Expression |
---|---|
ctiunct | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpomen 12328 | . . . . 5 | |
2 | 1 | ensymi 6748 | . . . 4 |
3 | bren 6713 | . . . 4 | |
4 | 2, 3 | mpbi 144 | . . 3 |
5 | 4 | a1i 9 | . 2 |
6 | ctiunct.a | . . . . . . . 8 ⊔ | |
7 | eqid 2165 | . . . . . . . 8 inl inl | |
8 | eqid 2165 | . . . . . . . 8 inl inl | |
9 | 6, 7, 8 | ctssdccl 7076 | . . . . . . 7 inl inl inl DECID inl |
10 | 9 | simp1d 999 | . . . . . 6 inl |
11 | 10 | adantr 274 | . . . . 5 inl |
12 | 9 | simp3d 1001 | . . . . . 6 DECID inl |
13 | 12 | adantr 274 | . . . . 5 DECID inl |
14 | 9 | simp2d 1000 | . . . . . 6 inl inl |
15 | 14 | adantr 274 | . . . . 5 inl inl |
16 | ctiunct.b | . . . . . . . 8 ⊔ | |
17 | eqid 2165 | . . . . . . . 8 inl inl | |
18 | eqid 2165 | . . . . . . . 8 inl inl | |
19 | 16, 17, 18 | ctssdccl 7076 | . . . . . . 7 inl inl inl DECID inl |
20 | 19 | simp1d 999 | . . . . . 6 inl |
21 | 20 | adantlr 469 | . . . . 5 inl |
22 | 19 | simp3d 1001 | . . . . . 6 DECID inl |
23 | 22 | adantlr 469 | . . . . 5 DECID inl |
24 | 19 | simp2d 1000 | . . . . . 6 inl inl |
25 | 24 | adantlr 469 | . . . . 5 inl inl |
26 | simpr 109 | . . . . 5 | |
27 | eqid 2165 | . . . . 5 inl inl inl inl inl inl | |
28 | 11, 13, 15, 21, 23, 25, 26, 27 | ctiunctlemuom 12369 | . . . 4 inl inl inl |
29 | eqid 2165 | . . . . . 6 inl inl inl inl inl inl inl inl inl inl | |
30 | nfv 1516 | . . . . . . . . 9 inl | |
31 | nfcsb1v 3078 | . . . . . . . . . 10 inl inl | |
32 | 31 | nfel2 2321 | . . . . . . . . 9 inl inl |
33 | 30, 32 | nfan 1553 | . . . . . . . 8 inl inl inl |
34 | nfcv 2308 | . . . . . . . 8 | |
35 | 33, 34 | nfrabxy 2646 | . . . . . . 7 inl inl inl |
36 | nfcsb1v 3078 | . . . . . . . 8 inl inl | |
37 | nfcv 2308 | . . . . . . . 8 | |
38 | 36, 37 | nffv 5496 | . . . . . . 7 inl inl |
39 | 35, 38 | nfmpt 4074 | . . . . . 6 inl inl inl inl inl |
40 | 11, 13, 15, 21, 23, 25, 26, 27, 29, 39, 35 | ctiunctlemfo 12372 | . . . . 5 inl inl inl inl inl inl inl inl |
41 | omex 4570 | . . . . . . . 8 | |
42 | 41 | rabex 4126 | . . . . . . 7 inl inl inl |
43 | 42 | mptex 5711 | . . . . . 6 inl inl inl inl inl |
44 | foeq1 5406 | . . . . . 6 inl inl inl inl inl inl inl inl inl inl inl inl inl inl inl inl | |
45 | 43, 44 | spcev 2821 | . . . . 5 inl inl inl inl inl inl inl inl inl inl inl |
46 | 40, 45 | syl 14 | . . . 4 inl inl inl |
47 | 11, 13, 15, 21, 23, 25, 26, 27 | ctiunctlemudc 12370 | . . . 4 DECID inl inl inl |
48 | sseq1 3165 | . . . . . 6 inl inl inl inl inl inl | |
49 | foeq2 5407 | . . . . . . 7 inl inl inl inl inl inl | |
50 | 49 | exbidv 1813 | . . . . . 6 inl inl inl inl inl inl |
51 | eleq2 2230 | . . . . . . . 8 inl inl inl inl inl inl | |
52 | 51 | dcbid 828 | . . . . . . 7 inl inl inl DECID DECID inl inl inl |
53 | 52 | ralbidv 2466 | . . . . . 6 inl inl inl DECID DECID inl inl inl |
54 | 48, 50, 53 | 3anbi123d 1302 | . . . . 5 inl inl inl DECID inl inl inl inl inl inl DECID inl inl inl |
55 | 42, 54 | spcev 2821 | . . . 4 inl inl inl inl inl inl DECID inl inl inl DECID |
56 | 28, 46, 47, 55 | syl3anc 1228 | . . 3 DECID |
57 | ctssdc 7078 | . . . 4 DECID ⊔ | |
58 | foeq1 5406 | . . . . 5 ⊔ ⊔ | |
59 | 58 | cbvexv 1906 | . . . 4 ⊔ ⊔ |
60 | 57, 59 | bitri 183 | . . 3 DECID ⊔ |
61 | 56, 60 | sylib 121 | . 2 ⊔ |
62 | 5, 61 | exlimddv 1886 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 DECID wdc 824 w3a 968 wceq 1343 wex 1480 wcel 2136 wral 2444 crab 2448 csb 3045 wss 3116 ciun 3866 class class class wbr 3982 cmpt 4043 com 4567 cxp 4602 ccnv 4603 cima 4607 ccom 4608 wfo 5186 wf1o 5187 cfv 5188 c1st 6106 c2nd 6107 c1o 6377 cen 6704 ⊔ cdju 7002 inlcinl 7010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-xor 1366 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-1o 6384 df-er 6501 df-en 6707 df-dju 7003 df-inl 7012 df-inr 7013 df-case 7049 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-dvds 11728 |
This theorem is referenced by: ctiunctal 12374 unct 12375 |
Copyright terms: Public domain | W3C validator |