| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssddif | Unicode version | ||
| Description: Double complement and
subset. Similar to ddifss 3410 but inside a class
|
| Ref | Expression |
|---|---|
| ssddif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancr 321 |
. . . . 5
| |
| 2 | simpr 110 |
. . . . . . . 8
| |
| 3 | 2 | con2i 628 |
. . . . . . 7
|
| 4 | 3 | anim2i 342 |
. . . . . 6
|
| 5 | eldif 3174 |
. . . . . . 7
| |
| 6 | eldif 3174 |
. . . . . . . . 9
| |
| 7 | 6 | notbii 669 |
. . . . . . . 8
|
| 8 | 7 | anbi2i 457 |
. . . . . . 7
|
| 9 | 5, 8 | bitri 184 |
. . . . . 6
|
| 10 | 4, 9 | sylibr 134 |
. . . . 5
|
| 11 | 1, 10 | syl6 33 |
. . . 4
|
| 12 | eldifi 3294 |
. . . . 5
| |
| 13 | 12 | imim2i 12 |
. . . 4
|
| 14 | 11, 13 | impbii 126 |
. . 3
|
| 15 | 14 | albii 1492 |
. 2
|
| 16 | ssalel 3180 |
. 2
| |
| 17 | ssalel 3180 |
. 2
| |
| 18 | 15, 16, 17 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 |
| This theorem is referenced by: ddifss 3410 inssddif 3413 |
| Copyright terms: Public domain | W3C validator |