ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssddif Unicode version

Theorem ssddif 3393
Description: Double complement and subset. Similar to ddifss 3397 but inside a class  B instead of the universal class  _V. In classical logic the subset operation on the right hand side could be an equality (that is,  A  C_  B  <->  ( B  \  ( B 
\  A ) )  =  A). (Contributed by Jim Kingdon, 24-Jul-2018.)
Assertion
Ref Expression
ssddif  |-  ( A 
C_  B  <->  A  C_  ( B  \  ( B  \  A ) ) )

Proof of Theorem ssddif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ancr 321 . . . . 5  |-  ( ( x  e.  A  ->  x  e.  B )  ->  ( x  e.  A  ->  ( x  e.  B  /\  x  e.  A
) ) )
2 simpr 110 . . . . . . . 8  |-  ( ( x  e.  B  /\  -.  x  e.  A
)  ->  -.  x  e.  A )
32con2i 628 . . . . . . 7  |-  ( x  e.  A  ->  -.  ( x  e.  B  /\  -.  x  e.  A
) )
43anim2i 342 . . . . . 6  |-  ( ( x  e.  B  /\  x  e.  A )  ->  ( x  e.  B  /\  -.  ( x  e.  B  /\  -.  x  e.  A ) ) )
5 eldif 3162 . . . . . . 7  |-  ( x  e.  ( B  \ 
( B  \  A
) )  <->  ( x  e.  B  /\  -.  x  e.  ( B  \  A
) ) )
6 eldif 3162 . . . . . . . . 9  |-  ( x  e.  ( B  \  A )  <->  ( x  e.  B  /\  -.  x  e.  A ) )
76notbii 669 . . . . . . . 8  |-  ( -.  x  e.  ( B 
\  A )  <->  -.  (
x  e.  B  /\  -.  x  e.  A
) )
87anbi2i 457 . . . . . . 7  |-  ( ( x  e.  B  /\  -.  x  e.  ( B  \  A ) )  <-> 
( x  e.  B  /\  -.  ( x  e.  B  /\  -.  x  e.  A ) ) )
95, 8bitri 184 . . . . . 6  |-  ( x  e.  ( B  \ 
( B  \  A
) )  <->  ( x  e.  B  /\  -.  (
x  e.  B  /\  -.  x  e.  A
) ) )
104, 9sylibr 134 . . . . 5  |-  ( ( x  e.  B  /\  x  e.  A )  ->  x  e.  ( B 
\  ( B  \  A ) ) )
111, 10syl6 33 . . . 4  |-  ( ( x  e.  A  ->  x  e.  B )  ->  ( x  e.  A  ->  x  e.  ( B 
\  ( B  \  A ) ) ) )
12 eldifi 3281 . . . . 5  |-  ( x  e.  ( B  \ 
( B  \  A
) )  ->  x  e.  B )
1312imim2i 12 . . . 4  |-  ( ( x  e.  A  ->  x  e.  ( B  \  ( B  \  A
) ) )  -> 
( x  e.  A  ->  x  e.  B ) )
1411, 13impbii 126 . . 3  |-  ( ( x  e.  A  ->  x  e.  B )  <->  ( x  e.  A  ->  x  e.  ( B  \  ( B  \  A
) ) ) )
1514albii 1481 . 2  |-  ( A. x ( x  e.  A  ->  x  e.  B )  <->  A. x
( x  e.  A  ->  x  e.  ( B 
\  ( B  \  A ) ) ) )
16 dfss2 3168 . 2  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
17 dfss2 3168 . 2  |-  ( A 
C_  ( B  \ 
( B  \  A
) )  <->  A. x
( x  e.  A  ->  x  e.  ( B 
\  ( B  \  A ) ) ) )
1815, 16, 173bitr4i 212 1  |-  ( A 
C_  B  <->  A  C_  ( B  \  ( B  \  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    e. wcel 2164    \ cdif 3150    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166
This theorem is referenced by:  ddifss  3397  inssddif  3400
  Copyright terms: Public domain W3C validator