![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ddifss | GIF version |
Description: Double complement under universal class. In classical logic (or given an additional hypothesis, as in ddifnel 3268), this is equality rather than subset. (Contributed by Jim Kingdon, 24-Jul-2018.) |
Ref | Expression |
---|---|
ddifss | ⊢ 𝐴 ⊆ (V ∖ (V ∖ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3179 | . 2 ⊢ 𝐴 ⊆ V | |
2 | ssddif 3371 | . 2 ⊢ (𝐴 ⊆ V ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐴))) | |
3 | 1, 2 | mpbi 145 | 1 ⊢ 𝐴 ⊆ (V ∖ (V ∖ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: Vcvv 2739 ∖ cdif 3128 ⊆ wss 3131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 df-in 3137 df-ss 3144 |
This theorem is referenced by: ssindif0im 3484 difdifdirss 3509 |
Copyright terms: Public domain | W3C validator |