ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssin Unicode version

Theorem unssin 3285
Description: Union as a subset of class complement and intersection (De Morgan's law). One direction of the definition of union in [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
Assertion
Ref Expression
unssin  |-  ( A  u.  B )  C_  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  B ) ) )

Proof of Theorem unssin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oranim 755 . . . . 5  |-  ( ( x  e.  A  \/  x  e.  B )  ->  -.  ( -.  x  e.  A  /\  -.  x  e.  B ) )
2 eldifn 3169 . . . . . 6  |-  ( x  e.  ( _V  \  A )  ->  -.  x  e.  A )
3 eldifn 3169 . . . . . 6  |-  ( x  e.  ( _V  \  B )  ->  -.  x  e.  B )
42, 3anim12i 336 . . . . 5  |-  ( ( x  e.  ( _V 
\  A )  /\  x  e.  ( _V  \  B ) )  -> 
( -.  x  e.  A  /\  -.  x  e.  B ) )
51, 4nsyl 602 . . . 4  |-  ( ( x  e.  A  \/  x  e.  B )  ->  -.  ( x  e.  ( _V  \  A
)  /\  x  e.  ( _V  \  B ) ) )
6 elin 3229 . . . 4  |-  ( x  e.  ( ( _V 
\  A )  i^i  ( _V  \  B
) )  <->  ( x  e.  ( _V  \  A
)  /\  x  e.  ( _V  \  B ) ) )
75, 6sylnibr 651 . . 3  |-  ( ( x  e.  A  \/  x  e.  B )  ->  -.  x  e.  ( ( _V  \  A
)  i^i  ( _V  \  B ) ) )
8 elun 3187 . . 3  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
9 vex 2663 . . . 4  |-  x  e. 
_V
10 eldif 3050 . . . 4  |-  ( x  e.  ( _V  \ 
( ( _V  \  A )  i^i  ( _V  \  B ) ) )  <->  ( x  e. 
_V  /\  -.  x  e.  ( ( _V  \  A )  i^i  ( _V  \  B ) ) ) )
119, 10mpbiran 909 . . 3  |-  ( x  e.  ( _V  \ 
( ( _V  \  A )  i^i  ( _V  \  B ) ) )  <->  -.  x  e.  ( ( _V  \  A )  i^i  ( _V  \  B ) ) )
127, 8, 113imtr4i 200 . 2  |-  ( x  e.  ( A  u.  B )  ->  x  e.  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  B ) ) ) )
1312ssriv 3071 1  |-  ( A  u.  B )  C_  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    \/ wo 682    e. wcel 1465   _Vcvv 2660    \ cdif 3038    u. cun 3039    i^i cin 3040    C_ wss 3041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-v 2662  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator