| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssv | Unicode version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. 2
| |
| 2 | 1 | ssriv 3205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 df-in 3180 df-ss 3187 |
| This theorem is referenced by: ddifss 3419 inv1 3505 unv 3506 vss 3516 disj2 3524 pwv 3863 trv 4170 xpss 4801 djussxp 4841 dmv 4913 dmresi 5033 resid 5035 ssrnres 5144 rescnvcnv 5164 cocnvcnv1 5212 relrelss 5228 dffn2 5447 oprabss 6054 ofmres 6244 f1stres 6268 f2ndres 6269 fiintim 7054 residfi 7068 djuf1olemr 7182 endjusym 7224 dju1p1e2 7336 suplocexprlemell 7861 seq3val 10642 seqvalcd 10643 seq3-1 10644 seqf 10646 seq3p1 10647 seqf2 10650 seq1cd 10651 seqp1cd 10652 seqclg 10654 seqfeq4g 10713 wrdv 11047 setscom 12987 gsumwsubmcl 13443 gsumfzcl 13446 prdsinvlem 13555 rngmgpf 13814 mgpf 13888 crngridl 14407 upxp 14859 uptx 14861 cnmptid 14868 cnmpt1st 14875 cnmpt2nd 14876 |
| Copyright terms: Public domain | W3C validator |