| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssv | Unicode version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. 2
| |
| 2 | 1 | ssriv 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ddifss 3411 inv1 3497 unv 3498 vss 3508 disj2 3516 pwv 3849 trv 4154 xpss 4783 djussxp 4823 dmv 4894 dmresi 5014 resid 5016 ssrnres 5125 rescnvcnv 5145 cocnvcnv1 5193 relrelss 5209 dffn2 5427 oprabss 6031 ofmres 6221 f1stres 6245 f2ndres 6246 fiintim 7028 residfi 7042 djuf1olemr 7156 endjusym 7198 dju1p1e2 7305 suplocexprlemell 7826 seq3val 10605 seqvalcd 10606 seq3-1 10607 seqf 10609 seq3p1 10610 seqf2 10613 seq1cd 10614 seqp1cd 10615 seqclg 10617 seqfeq4g 10676 wrdv 11010 setscom 12872 gsumwsubmcl 13328 gsumfzcl 13331 prdsinvlem 13440 rngmgpf 13699 mgpf 13773 crngridl 14292 upxp 14744 uptx 14746 cnmptid 14753 cnmpt1st 14760 cnmpt2nd 14761 |
| Copyright terms: Public domain | W3C validator |