| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssv | Unicode version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. 2
| |
| 2 | 1 | ssriv 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ddifss 3411 inv1 3497 unv 3498 vss 3508 disj2 3516 pwv 3849 trv 4155 xpss 4784 djussxp 4824 dmv 4895 dmresi 5015 resid 5017 ssrnres 5126 rescnvcnv 5146 cocnvcnv1 5194 relrelss 5210 dffn2 5429 oprabss 6033 ofmres 6223 f1stres 6247 f2ndres 6248 fiintim 7030 residfi 7044 djuf1olemr 7158 endjusym 7200 dju1p1e2 7307 suplocexprlemell 7828 seq3val 10607 seqvalcd 10608 seq3-1 10609 seqf 10611 seq3p1 10612 seqf2 10615 seq1cd 10616 seqp1cd 10617 seqclg 10619 seqfeq4g 10678 wrdv 11012 setscom 12905 gsumwsubmcl 13361 gsumfzcl 13364 prdsinvlem 13473 rngmgpf 13732 mgpf 13806 crngridl 14325 upxp 14777 uptx 14779 cnmptid 14786 cnmpt1st 14793 cnmpt2nd 14794 |
| Copyright terms: Public domain | W3C validator |