ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssv Unicode version

Theorem ssv 3205
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.)
Assertion
Ref Expression
ssv  |-  A  C_  _V

Proof of Theorem ssv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2774 . 2  |-  ( x  e.  A  ->  x  e.  _V )
21ssriv 3187 1  |-  A  C_  _V
Colors of variables: wff set class
Syntax hints:   _Vcvv 2763    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-v 2765  df-in 3163  df-ss 3170
This theorem is referenced by:  ddifss  3401  inv1  3487  unv  3488  vss  3498  disj2  3506  pwv  3838  trv  4143  xpss  4771  djussxp  4811  dmv  4882  dmresi  5001  resid  5003  ssrnres  5112  rescnvcnv  5132  cocnvcnv1  5180  relrelss  5196  dffn2  5409  oprabss  6008  ofmres  6193  f1stres  6217  f2ndres  6218  fiintim  6992  residfi  7006  djuf1olemr  7120  endjusym  7162  dju1p1e2  7264  suplocexprlemell  7780  seq3val  10552  seqvalcd  10553  seq3-1  10554  seqf  10556  seq3p1  10557  seqf2  10560  seq1cd  10561  seqp1cd  10562  seqclg  10564  seqfeq4g  10623  wrdv  10951  setscom  12718  gsumwsubmcl  13128  gsumfzcl  13131  rngmgpf  13493  mgpf  13567  crngridl  14086  upxp  14508  uptx  14510  cnmptid  14517  cnmpt1st  14524  cnmpt2nd  14525
  Copyright terms: Public domain W3C validator