ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssv Unicode version

Theorem ssv 3202
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.)
Assertion
Ref Expression
ssv  |-  A  C_  _V

Proof of Theorem ssv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2771 . 2  |-  ( x  e.  A  ->  x  e.  _V )
21ssriv 3184 1  |-  A  C_  _V
Colors of variables: wff set class
Syntax hints:   _Vcvv 2760    C_ wss 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762  df-in 3160  df-ss 3167
This theorem is referenced by:  ddifss  3398  inv1  3484  unv  3485  vss  3495  disj2  3503  pwv  3835  trv  4140  xpss  4768  djussxp  4808  dmv  4879  dmresi  4998  resid  5000  ssrnres  5109  rescnvcnv  5129  cocnvcnv1  5177  relrelss  5193  dffn2  5406  oprabss  6005  ofmres  6190  f1stres  6214  f2ndres  6215  fiintim  6987  residfi  7001  djuf1olemr  7115  endjusym  7157  dju1p1e2  7259  suplocexprlemell  7775  seq3val  10534  seqvalcd  10535  seq3-1  10536  seqf  10538  seq3p1  10539  seqf2  10542  seq1cd  10543  seqp1cd  10544  seqclg  10546  seqfeq4g  10605  wrdv  10933  setscom  12661  gsumwsubmcl  13071  gsumfzcl  13074  rngmgpf  13436  mgpf  13510  crngridl  14029  upxp  14451  uptx  14453  cnmptid  14460  cnmpt1st  14467  cnmpt2nd  14468
  Copyright terms: Public domain W3C validator