| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssv | Unicode version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | 1 | ssriv 3187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ddifss 3401 inv1 3487 unv 3488 vss 3498 disj2 3506 pwv 3838 trv 4143 xpss 4771 djussxp 4811 dmv 4882 dmresi 5001 resid 5003 ssrnres 5112 rescnvcnv 5132 cocnvcnv1 5180 relrelss 5196 dffn2 5409 oprabss 6008 ofmres 6193 f1stres 6217 f2ndres 6218 fiintim 6992 residfi 7006 djuf1olemr 7120 endjusym 7162 dju1p1e2 7264 suplocexprlemell 7780 seq3val 10552 seqvalcd 10553 seq3-1 10554 seqf 10556 seq3p1 10557 seqf2 10560 seq1cd 10561 seqp1cd 10562 seqclg 10564 seqfeq4g 10623 wrdv 10951 setscom 12718 gsumwsubmcl 13128 gsumfzcl 13131 rngmgpf 13493 mgpf 13567 crngridl 14086 upxp 14508 uptx 14510 cnmptid 14517 cnmpt1st 14524 cnmpt2nd 14525 |
| Copyright terms: Public domain | W3C validator |