ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssv Unicode version

Theorem ssv 3246
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.)
Assertion
Ref Expression
ssv  |-  A  C_  _V

Proof of Theorem ssv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2811 . 2  |-  ( x  e.  A  ->  x  e.  _V )
21ssriv 3228 1  |-  A  C_  _V
Colors of variables: wff set class
Syntax hints:   _Vcvv 2799    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801  df-in 3203  df-ss 3210
This theorem is referenced by:  ddifss  3442  inv1  3528  unv  3529  vss  3539  disj2  3547  pwv  3887  trv  4194  xpss  4827  djussxp  4867  dmv  4939  dmresi  5060  resid  5062  ssrnres  5171  rescnvcnv  5191  cocnvcnv1  5239  relrelss  5255  dffn2  5475  oprabss  6090  ofmres  6281  f1stres  6305  f2ndres  6306  fiintim  7093  residfi  7107  djuf1olemr  7221  endjusym  7263  dju1p1e2  7375  suplocexprlemell  7900  seq3val  10682  seqvalcd  10683  seq3-1  10684  seqf  10686  seq3p1  10687  seqf2  10690  seq1cd  10691  seqp1cd  10692  seqclg  10694  seqfeq4g  10753  wrdv  11087  setscom  13072  gsumwsubmcl  13529  gsumfzcl  13532  prdsinvlem  13641  rngmgpf  13900  mgpf  13974  crngridl  14494  upxp  14946  uptx  14948  cnmptid  14955  cnmpt1st  14962  cnmpt2nd  14963
  Copyright terms: Public domain W3C validator