| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssv | Unicode version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | 1 | ssriv 3228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ddifss 3442 inv1 3528 unv 3529 vss 3539 disj2 3547 pwv 3887 trv 4194 xpss 4827 djussxp 4867 dmv 4939 dmresi 5060 resid 5062 ssrnres 5171 rescnvcnv 5191 cocnvcnv1 5239 relrelss 5255 dffn2 5475 oprabss 6090 ofmres 6281 f1stres 6305 f2ndres 6306 fiintim 7093 residfi 7107 djuf1olemr 7221 endjusym 7263 dju1p1e2 7375 suplocexprlemell 7900 seq3val 10682 seqvalcd 10683 seq3-1 10684 seqf 10686 seq3p1 10687 seqf2 10690 seq1cd 10691 seqp1cd 10692 seqclg 10694 seqfeq4g 10753 wrdv 11087 setscom 13072 gsumwsubmcl 13529 gsumfzcl 13532 prdsinvlem 13641 rngmgpf 13900 mgpf 13974 crngridl 14494 upxp 14946 uptx 14948 cnmptid 14955 cnmpt1st 14962 cnmpt2nd 14963 |
| Copyright terms: Public domain | W3C validator |