| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssv | Unicode version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. 2
| |
| 2 | 1 | ssriv 3188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ddifss 3402 inv1 3488 unv 3489 vss 3499 disj2 3507 pwv 3839 trv 4144 xpss 4772 djussxp 4812 dmv 4883 dmresi 5002 resid 5004 ssrnres 5113 rescnvcnv 5133 cocnvcnv1 5181 relrelss 5197 dffn2 5412 oprabss 6012 ofmres 6202 f1stres 6226 f2ndres 6227 fiintim 7001 residfi 7015 djuf1olemr 7129 endjusym 7171 dju1p1e2 7276 suplocexprlemell 7797 seq3val 10569 seqvalcd 10570 seq3-1 10571 seqf 10573 seq3p1 10574 seqf2 10577 seq1cd 10578 seqp1cd 10579 seqclg 10581 seqfeq4g 10640 wrdv 10968 setscom 12743 gsumwsubmcl 13198 gsumfzcl 13201 prdsinvlem 13310 rngmgpf 13569 mgpf 13643 crngridl 14162 upxp 14592 uptx 14594 cnmptid 14601 cnmpt1st 14608 cnmpt2nd 14609 |
| Copyright terms: Public domain | W3C validator |