ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn3 Unicode version

Theorem dffn3 5368
Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.)
Assertion
Ref Expression
dffn3  |-  ( F  Fn  A  <->  F : A
--> ran  F )

Proof of Theorem dffn3
StepHypRef Expression
1 ssid 3173 . . 3  |-  ran  F  C_ 
ran  F
21biantru 302 . 2  |-  ( F  Fn  A  <->  ( F  Fn  A  /\  ran  F  C_ 
ran  F ) )
3 df-f 5212 . 2  |-  ( F : A --> ran  F  <->  ( F  Fn  A  /\  ran  F  C_  ran  F ) )
42, 3bitr4i 187 1  |-  ( F  Fn  A  <->  F : A
--> ran  F )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    C_ wss 3127   ran crn 4621    Fn wfn 5203   -->wf 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-in 3133  df-ss 3140  df-f 5212
This theorem is referenced by:  fsn2  5682  fo2ndf  6218
  Copyright terms: Public domain W3C validator