ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn3 Unicode version

Theorem dffn3 5206
Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.)
Assertion
Ref Expression
dffn3  |-  ( F  Fn  A  <->  F : A
--> ran  F )

Proof of Theorem dffn3
StepHypRef Expression
1 ssid 3059 . . 3  |-  ran  F  C_ 
ran  F
21biantru 297 . 2  |-  ( F  Fn  A  <->  ( F  Fn  A  /\  ran  F  C_ 
ran  F ) )
3 df-f 5053 . 2  |-  ( F : A --> ran  F  <->  ( F  Fn  A  /\  ran  F  C_  ran  F ) )
42, 3bitr4i 186 1  |-  ( F  Fn  A  <->  F : A
--> ran  F )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    C_ wss 3013   ran crn 4468    Fn wfn 5044   -->wf 5045
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-11 1449  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-in 3019  df-ss 3026  df-f 5053
This theorem is referenced by:  fsn2  5510  fo2ndf  6030
  Copyright terms: Public domain W3C validator