| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssid | Unicode version | ||
| Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | ssriv 3188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssidd 3205 eqimssi 3240 eqimss2i 3241 inv1 3488 difid 3520 undifabs 3528 pwidg 3620 elssuni 3868 unimax 3874 intmin 3895 rintm 4010 iunpw 4516 sucprcreg 4586 tfisi 4624 peano5 4635 xpss1 4774 xpss2 4775 residm 4979 resdm 4986 resmpt3 4996 ssrnres 5113 cocnvss 5196 dffn3 5421 fimacnv 5694 foima2 5801 tfrlem1 6375 rdgss 6450 fpmg 6742 findcard2d 6961 findcard2sd 6962 f1finf1o 7022 fidcenumlemr 7030 casef 7163 nnnninf 7201 1idprl 7674 1idpru 7675 ltexprlemm 7684 suplocexprlemmu 7802 elq 9713 expcl 10666 serclim0 11487 fsum2d 11617 fsumabs 11647 fsumiun 11659 fprod2d 11805 reef11 11881 ghmghmrn 13469 subrgid 13855 znf1o 14283 topopn 14328 fiinbas 14369 topbas 14387 topcld 14429 ntrtop 14448 opnneissb 14475 opnssneib 14476 opnneiid 14484 idcn 14532 cnconst2 14553 lmres 14568 retopbas 14843 cnopncntop 14864 cnopn 14865 abscncf 14905 recncf 14906 imcncf 14907 cjcncf 14908 mulc1cncf 14909 cncfcn1cntop 14914 cncfmpt2fcntop 14919 addccncf 14920 idcncf 14921 sub1cncf 14922 sub2cncf 14923 cdivcncfap 14924 negfcncf 14926 expcncf 14929 cnrehmeocntop 14930 maxcncf 14935 mincncf 14936 ivthreinc 14965 hovercncf 14966 cnlimcim 14991 cnlimc 14992 cnlimci 14993 dvcnp2cntop 15019 dvcn 15020 dvmptfsum 15045 dvef 15047 plyssc 15059 efcn 15088 domomsubct 15732 |
| Copyright terms: Public domain | W3C validator |