| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssid | Unicode version | ||
| Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | ssriv 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssidd 3214 eqimssi 3249 eqimss2i 3250 inv1 3497 difid 3529 undifabs 3537 pwidg 3630 elssuni 3878 unimax 3884 intmin 3905 rintm 4020 iunpw 4527 sucprcreg 4597 tfisi 4635 peano5 4646 xpss1 4785 xpss2 4786 residm 4991 resdm 4998 resmpt3 5008 ssrnres 5125 cocnvss 5208 dffn3 5436 fimacnv 5709 foima2 5820 tfrlem1 6394 rdgss 6469 fpmg 6761 findcard2d 6988 findcard2sd 6989 f1finf1o 7049 fidcenumlemr 7057 casef 7190 nnnninf 7228 1idprl 7703 1idpru 7704 ltexprlemm 7713 suplocexprlemmu 7831 elq 9743 expcl 10702 serclim0 11616 fsum2d 11746 fsumabs 11776 fsumiun 11788 fprod2d 11934 reef11 12010 ghmghmrn 13599 subrgid 13985 znf1o 14413 topopn 14480 fiinbas 14521 topbas 14539 topcld 14581 ntrtop 14600 opnneissb 14627 opnssneib 14628 opnneiid 14636 idcn 14684 cnconst2 14705 lmres 14720 retopbas 14995 cnopncntop 15016 cnopn 15017 abscncf 15057 recncf 15058 imcncf 15059 cjcncf 15060 mulc1cncf 15061 cncfcn1cntop 15066 cncfmpt2fcntop 15071 addccncf 15072 idcncf 15073 sub1cncf 15074 sub2cncf 15075 cdivcncfap 15076 negfcncf 15078 expcncf 15081 cnrehmeocntop 15082 maxcncf 15087 mincncf 15088 ivthreinc 15117 hovercncf 15118 cnlimcim 15143 cnlimc 15144 cnlimci 15145 dvcnp2cntop 15171 dvcn 15172 dvmptfsum 15197 dvef 15199 plyssc 15211 efcn 15240 domomsubct 15938 |
| Copyright terms: Public domain | W3C validator |