![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssid | Unicode version |
Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
ssid |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ssriv 3065 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-11 1465 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-in 3041 df-ss 3048 |
This theorem is referenced by: ssidd 3082 eqimssi 3117 eqimss2i 3118 inv1 3363 difid 3395 undifabs 3403 pwidg 3488 elssuni 3728 unimax 3734 intmin 3755 rintm 3869 iunpw 4359 sucprcreg 4422 tfisi 4459 peano5 4470 xpss1 4607 xpss2 4608 residm 4807 resdm 4814 resmpt3 4824 ssrnres 4937 cocnvss 5020 dffn3 5239 fimacnv 5501 foima2 5605 tfrlem1 6157 rdgss 6232 fpmg 6520 findcard2d 6736 findcard2sd 6737 f1finf1o 6785 fidcenumlemr 6793 casef 6923 nnnninf 6971 1idprl 7340 1idpru 7341 ltexprlemm 7350 elq 9310 expcl 10198 serclim0 10960 fsum2d 11090 fsumabs 11120 fsumiun 11132 reef11 11251 ressid 11857 topopn 12012 fiinbas 12053 topbas 12073 topcld 12115 ntrtop 12134 opnneissb 12161 opnssneib 12162 opnneiid 12170 idcn 12217 cnconst2 12238 lmres 12253 retopbas 12506 abscncf 12552 recncf 12553 imcncf 12554 cjcncf 12555 mulc1cncf 12556 cncfcn1cntop 12561 cncfmpt2fcntop 12565 addccncf 12566 cdivcncfap 12567 negfcncf 12569 expcncf 12572 cnlimcim 12590 cnlimc 12591 cnlimci 12592 dvcnp2cntop 12612 dvcn 12613 |
Copyright terms: Public domain | W3C validator |