Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssid | Unicode version |
Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
ssid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | 1 | ssriv 3157 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2146 wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 |
This theorem is referenced by: ssidd 3174 eqimssi 3209 eqimss2i 3210 inv1 3457 difid 3489 undifabs 3497 pwidg 3586 elssuni 3833 unimax 3839 intmin 3860 rintm 3974 iunpw 4474 sucprcreg 4542 tfisi 4580 peano5 4591 xpss1 4730 xpss2 4731 residm 4932 resdm 4939 resmpt3 4949 ssrnres 5063 cocnvss 5146 dffn3 5368 fimacnv 5637 foima2 5743 tfrlem1 6299 rdgss 6374 fpmg 6664 findcard2d 6881 findcard2sd 6882 f1finf1o 6936 fidcenumlemr 6944 casef 7077 nnnninf 7114 1idprl 7564 1idpru 7565 ltexprlemm 7574 suplocexprlemmu 7692 elq 9595 expcl 10508 serclim0 11281 fsum2d 11411 fsumabs 11441 fsumiun 11453 fprod2d 11599 reef11 11675 ressid 12492 topopn 13077 fiinbas 13118 topbas 13138 topcld 13180 ntrtop 13199 opnneissb 13226 opnssneib 13227 opnneiid 13235 idcn 13283 cnconst2 13304 lmres 13319 retopbas 13594 cnopncntop 13608 abscncf 13643 recncf 13644 imcncf 13645 cjcncf 13646 mulc1cncf 13647 cncfcn1cntop 13652 cncfmpt2fcntop 13656 addccncf 13657 cdivcncfap 13658 negfcncf 13660 expcncf 13663 cnrehmeocntop 13664 cnlimcim 13711 cnlimc 13712 cnlimci 13713 dvcnp2cntop 13734 dvcn 13735 dvef 13759 efcn 13760 |
Copyright terms: Public domain | W3C validator |