![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssid | Unicode version |
Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
ssid |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ssriv 3184 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: ssidd 3201 eqimssi 3236 eqimss2i 3237 inv1 3484 difid 3516 undifabs 3524 pwidg 3616 elssuni 3864 unimax 3870 intmin 3891 rintm 4006 iunpw 4512 sucprcreg 4582 tfisi 4620 peano5 4631 xpss1 4770 xpss2 4771 residm 4975 resdm 4982 resmpt3 4992 ssrnres 5109 cocnvss 5192 dffn3 5415 fimacnv 5688 foima2 5795 tfrlem1 6363 rdgss 6438 fpmg 6730 findcard2d 6949 findcard2sd 6950 f1finf1o 7008 fidcenumlemr 7016 casef 7149 nnnninf 7187 1idprl 7652 1idpru 7653 ltexprlemm 7662 suplocexprlemmu 7780 elq 9690 expcl 10631 serclim0 11451 fsum2d 11581 fsumabs 11611 fsumiun 11623 fprod2d 11769 reef11 11845 ghmghmrn 13336 subrgid 13722 znf1o 14150 topopn 14187 fiinbas 14228 topbas 14246 topcld 14288 ntrtop 14307 opnneissb 14334 opnssneib 14335 opnneiid 14343 idcn 14391 cnconst2 14412 lmres 14427 retopbas 14702 cnopncntop 14723 cnopn 14724 abscncf 14764 recncf 14765 imcncf 14766 cjcncf 14767 mulc1cncf 14768 cncfcn1cntop 14773 cncfmpt2fcntop 14778 addccncf 14779 idcncf 14780 sub1cncf 14781 sub2cncf 14782 cdivcncfap 14783 negfcncf 14785 expcncf 14788 cnrehmeocntop 14789 maxcncf 14794 mincncf 14795 ivthreinc 14824 hovercncf 14825 cnlimcim 14850 cnlimc 14851 cnlimci 14852 dvcnp2cntop 14878 dvcn 14879 dvmptfsum 14904 dvef 14906 plyssc 14918 efcn 14944 |
Copyright terms: Public domain | W3C validator |