| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssid | Unicode version | ||
| Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | ssriv 3228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssidd 3245 eqimssi 3280 eqimss2i 3281 inv1 3528 difid 3560 undifabs 3568 pwidg 3663 elssuni 3915 unimax 3921 intmin 3942 rintm 4057 iunpw 4570 sucprcreg 4640 tfisi 4678 peano5 4689 xpss1 4828 xpss2 4829 residm 5036 resdm 5043 resmpt3 5053 ssrnres 5170 cocnvss 5253 dffn3 5483 fimacnv 5763 foima2 5874 tfrlem1 6452 rdgss 6527 fpmg 6819 findcard2d 7049 findcard2sd 7050 f1finf1o 7110 fidcenumlemr 7118 casef 7251 nnnninf 7289 1idprl 7773 1idpru 7774 ltexprlemm 7783 suplocexprlemmu 7901 elq 9813 expcl 10774 serclim0 11811 fsum2d 11941 fsumabs 11971 fsumiun 11983 fprod2d 12129 reef11 12205 ghmghmrn 13795 subrgid 14181 znf1o 14609 topopn 14676 fiinbas 14717 topbas 14735 topcld 14777 ntrtop 14796 opnneissb 14823 opnssneib 14824 opnneiid 14832 idcn 14880 cnconst2 14901 lmres 14916 retopbas 15191 cnopncntop 15212 cnopn 15213 abscncf 15253 recncf 15254 imcncf 15255 cjcncf 15256 mulc1cncf 15257 cncfcn1cntop 15262 cncfmpt2fcntop 15267 addccncf 15268 idcncf 15269 sub1cncf 15270 sub2cncf 15271 cdivcncfap 15272 negfcncf 15274 expcncf 15277 cnrehmeocntop 15278 maxcncf 15283 mincncf 15284 ivthreinc 15313 hovercncf 15314 cnlimcim 15339 cnlimc 15340 cnlimci 15341 dvcnp2cntop 15367 dvcn 15368 dvmptfsum 15393 dvef 15395 plyssc 15407 efcn 15436 domomsubct 16326 |
| Copyright terms: Public domain | W3C validator |