![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssid | Unicode version |
Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
ssid |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ssriv 3161 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-in 3137 df-ss 3144 |
This theorem is referenced by: ssidd 3178 eqimssi 3213 eqimss2i 3214 inv1 3461 difid 3493 undifabs 3501 pwidg 3591 elssuni 3839 unimax 3845 intmin 3866 rintm 3981 iunpw 4482 sucprcreg 4550 tfisi 4588 peano5 4599 xpss1 4738 xpss2 4739 residm 4941 resdm 4948 resmpt3 4958 ssrnres 5073 cocnvss 5156 dffn3 5378 fimacnv 5647 foima2 5754 tfrlem1 6311 rdgss 6386 fpmg 6676 findcard2d 6893 findcard2sd 6894 f1finf1o 6948 fidcenumlemr 6956 casef 7089 nnnninf 7126 1idprl 7591 1idpru 7592 ltexprlemm 7601 suplocexprlemmu 7719 elq 9624 expcl 10540 serclim0 11315 fsum2d 11445 fsumabs 11475 fsumiun 11487 fprod2d 11633 reef11 11709 subrgid 13349 topopn 13547 fiinbas 13588 topbas 13606 topcld 13648 ntrtop 13667 opnneissb 13694 opnssneib 13695 opnneiid 13703 idcn 13751 cnconst2 13772 lmres 13787 retopbas 14062 cnopncntop 14076 abscncf 14111 recncf 14112 imcncf 14113 cjcncf 14114 mulc1cncf 14115 cncfcn1cntop 14120 cncfmpt2fcntop 14124 addccncf 14125 cdivcncfap 14126 negfcncf 14128 expcncf 14131 cnrehmeocntop 14132 cnlimcim 14179 cnlimc 14180 cnlimci 14181 dvcnp2cntop 14202 dvcn 14203 dvef 14227 efcn 14228 |
Copyright terms: Public domain | W3C validator |