| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssid | Unicode version | ||
| Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. 2
| |
| 2 | 1 | ssriv 3205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: ssidd 3222 eqimssi 3257 eqimss2i 3258 inv1 3505 difid 3537 undifabs 3545 pwidg 3640 elssuni 3892 unimax 3898 intmin 3919 rintm 4034 iunpw 4545 sucprcreg 4615 tfisi 4653 peano5 4664 xpss1 4803 xpss2 4804 residm 5010 resdm 5017 resmpt3 5027 ssrnres 5144 cocnvss 5227 dffn3 5456 fimacnv 5732 foima2 5843 tfrlem1 6417 rdgss 6492 fpmg 6784 findcard2d 7014 findcard2sd 7015 f1finf1o 7075 fidcenumlemr 7083 casef 7216 nnnninf 7254 1idprl 7738 1idpru 7739 ltexprlemm 7748 suplocexprlemmu 7866 elq 9778 expcl 10739 serclim0 11731 fsum2d 11861 fsumabs 11891 fsumiun 11903 fprod2d 12049 reef11 12125 ghmghmrn 13714 subrgid 14100 znf1o 14528 topopn 14595 fiinbas 14636 topbas 14654 topcld 14696 ntrtop 14715 opnneissb 14742 opnssneib 14743 opnneiid 14751 idcn 14799 cnconst2 14820 lmres 14835 retopbas 15110 cnopncntop 15131 cnopn 15132 abscncf 15172 recncf 15173 imcncf 15174 cjcncf 15175 mulc1cncf 15176 cncfcn1cntop 15181 cncfmpt2fcntop 15186 addccncf 15187 idcncf 15188 sub1cncf 15189 sub2cncf 15190 cdivcncfap 15191 negfcncf 15193 expcncf 15196 cnrehmeocntop 15197 maxcncf 15202 mincncf 15203 ivthreinc 15232 hovercncf 15233 cnlimcim 15258 cnlimc 15259 cnlimci 15260 dvcnp2cntop 15286 dvcn 15287 dvmptfsum 15312 dvef 15314 plyssc 15326 efcn 15355 domomsubct 16140 |
| Copyright terms: Public domain | W3C validator |