![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssid | Unicode version |
Description: Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
ssid |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ssriv 3183 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: ssidd 3200 eqimssi 3235 eqimss2i 3236 inv1 3483 difid 3515 undifabs 3523 pwidg 3615 elssuni 3863 unimax 3869 intmin 3890 rintm 4005 iunpw 4511 sucprcreg 4581 tfisi 4619 peano5 4630 xpss1 4769 xpss2 4770 residm 4974 resdm 4981 resmpt3 4991 ssrnres 5108 cocnvss 5191 dffn3 5414 fimacnv 5687 foima2 5794 tfrlem1 6361 rdgss 6436 fpmg 6728 findcard2d 6947 findcard2sd 6948 f1finf1o 7006 fidcenumlemr 7014 casef 7147 nnnninf 7185 1idprl 7650 1idpru 7651 ltexprlemm 7660 suplocexprlemmu 7778 elq 9687 expcl 10628 serclim0 11448 fsum2d 11578 fsumabs 11608 fsumiun 11620 fprod2d 11766 reef11 11842 ghmghmrn 13333 subrgid 13719 znf1o 14139 topopn 14176 fiinbas 14217 topbas 14235 topcld 14277 ntrtop 14296 opnneissb 14323 opnssneib 14324 opnneiid 14332 idcn 14380 cnconst2 14401 lmres 14416 retopbas 14691 cnopncntop 14705 abscncf 14740 recncf 14741 imcncf 14742 cjcncf 14743 mulc1cncf 14744 cncfcn1cntop 14749 cncfmpt2fcntop 14753 addccncf 14754 idcncf 14755 sub1cncf 14756 sub2cncf 14757 cdivcncfap 14758 negfcncf 14760 expcncf 14763 cnrehmeocntop 14764 maxcncf 14769 mincncf 14770 ivthreinc 14799 hovercncf 14800 cnlimcim 14825 cnlimc 14826 cnlimci 14827 dvcnp2cntop 14848 dvcn 14849 dvef 14873 plyssc 14885 efcn 14903 |
Copyright terms: Public domain | W3C validator |