![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dffn3 | GIF version |
Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.) |
Ref | Expression |
---|---|
dffn3 | β’ (πΉ Fn π΄ β πΉ:π΄βΆran πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3176 | . . 3 β’ ran πΉ β ran πΉ | |
2 | 1 | biantru 302 | . 2 β’ (πΉ Fn π΄ β (πΉ Fn π΄ β§ ran πΉ β ran πΉ)) |
3 | df-f 5221 | . 2 β’ (πΉ:π΄βΆran πΉ β (πΉ Fn π΄ β§ ran πΉ β ran πΉ)) | |
4 | 2, 3 | bitr4i 187 | 1 β’ (πΉ Fn π΄ β πΉ:π΄βΆran πΉ) |
Colors of variables: wff set class |
Syntax hints: β§ wa 104 β wb 105 β wss 3130 ran crn 4628 Fn wfn 5212 βΆwf 5213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-in 3136 df-ss 3143 df-f 5221 |
This theorem is referenced by: fsn2 5691 fo2ndf 6228 |
Copyright terms: Public domain | W3C validator |