ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn3 GIF version

Theorem dffn3 5377
Description: A function maps to its range. (Contributed by NM, 1-Sep-1999.)
Assertion
Ref Expression
dffn3 (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟢ran 𝐹)

Proof of Theorem dffn3
StepHypRef Expression
1 ssid 3176 . . 3 ran 𝐹 βŠ† ran 𝐹
21biantru 302 . 2 (𝐹 Fn 𝐴 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 βŠ† ran 𝐹))
3 df-f 5221 . 2 (𝐹:𝐴⟢ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 βŠ† ran 𝐹))
42, 3bitr4i 187 1 (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟢ran 𝐹)
Colors of variables: wff set class
Syntax hints:   ∧ wa 104   ↔ wb 105   βŠ† wss 3130  ran crn 4628   Fn wfn 5212  βŸΆwf 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3136  df-ss 3143  df-f 5221
This theorem is referenced by:  fsn2  5691  fo2ndf  6228
  Copyright terms: Public domain W3C validator