Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsn2 | Unicode version |
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.) |
Ref | Expression |
---|---|
fsn2.1 |
Ref | Expression |
---|---|
fsn2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5337 | . . 3 | |
2 | fsn2.1 | . . . . 5 | |
3 | 2 | snid 3607 | . . . 4 |
4 | funfvex 5503 | . . . . 5 | |
5 | 4 | funfni 5288 | . . . 4 |
6 | 3, 5 | mpan2 422 | . . 3 |
7 | 1, 6 | syl 14 | . 2 |
8 | elex 2737 | . . 3 | |
9 | 8 | adantr 274 | . 2 |
10 | ffvelrn 5618 | . . . . . 6 | |
11 | 3, 10 | mpan2 422 | . . . . 5 |
12 | dffn3 5348 | . . . . . . . 8 | |
13 | 12 | biimpi 119 | . . . . . . 7 |
14 | imadmrn 4956 | . . . . . . . . . 10 | |
15 | fndm 5287 | . . . . . . . . . . 11 | |
16 | 15 | imaeq2d 4946 | . . . . . . . . . 10 |
17 | 14, 16 | eqtr3id 2213 | . . . . . . . . 9 |
18 | fnsnfv 5545 | . . . . . . . . . 10 | |
19 | 3, 18 | mpan2 422 | . . . . . . . . 9 |
20 | 17, 19 | eqtr4d 2201 | . . . . . . . 8 |
21 | feq3 5322 | . . . . . . . 8 | |
22 | 20, 21 | syl 14 | . . . . . . 7 |
23 | 13, 22 | mpbid 146 | . . . . . 6 |
24 | 1, 23 | syl 14 | . . . . 5 |
25 | 11, 24 | jca 304 | . . . 4 |
26 | snssi 3717 | . . . . 5 | |
27 | fss 5349 | . . . . . 6 | |
28 | 27 | ancoms 266 | . . . . 5 |
29 | 26, 28 | sylan 281 | . . . 4 |
30 | 25, 29 | impbii 125 | . . 3 |
31 | fsng 5658 | . . . . 5 | |
32 | 2, 31 | mpan 421 | . . . 4 |
33 | 32 | anbi2d 460 | . . 3 |
34 | 30, 33 | syl5bb 191 | . 2 |
35 | 7, 9, 34 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 wss 3116 csn 3576 cop 3579 cdm 4604 crn 4605 cima 4607 wfn 5183 wf 5184 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: fnressn 5671 fressnfv 5672 mapsnconst 6660 elixpsn 6701 en1 6765 |
Copyright terms: Public domain | W3C validator |