| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsn2 | Unicode version | ||
| Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.) |
| Ref | Expression |
|---|---|
| fsn2.1 |
|
| Ref | Expression |
|---|---|
| fsn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5427 |
. . 3
| |
| 2 | fsn2.1 |
. . . . 5
| |
| 3 | 2 | snid 3664 |
. . . 4
|
| 4 | funfvex 5595 |
. . . . 5
| |
| 5 | 4 | funfni 5377 |
. . . 4
|
| 6 | 3, 5 | mpan2 425 |
. . 3
|
| 7 | 1, 6 | syl 14 |
. 2
|
| 8 | elex 2783 |
. . 3
| |
| 9 | 8 | adantr 276 |
. 2
|
| 10 | ffvelcdm 5715 |
. . . . . 6
| |
| 11 | 3, 10 | mpan2 425 |
. . . . 5
|
| 12 | dffn3 5438 |
. . . . . . . 8
| |
| 13 | 12 | biimpi 120 |
. . . . . . 7
|
| 14 | imadmrn 5033 |
. . . . . . . . . 10
| |
| 15 | fndm 5374 |
. . . . . . . . . . 11
| |
| 16 | 15 | imaeq2d 5023 |
. . . . . . . . . 10
|
| 17 | 14, 16 | eqtr3id 2252 |
. . . . . . . . 9
|
| 18 | fnsnfv 5640 |
. . . . . . . . . 10
| |
| 19 | 3, 18 | mpan2 425 |
. . . . . . . . 9
|
| 20 | 17, 19 | eqtr4d 2241 |
. . . . . . . 8
|
| 21 | feq3 5412 |
. . . . . . . 8
| |
| 22 | 20, 21 | syl 14 |
. . . . . . 7
|
| 23 | 13, 22 | mpbid 147 |
. . . . . 6
|
| 24 | 1, 23 | syl 14 |
. . . . 5
|
| 25 | 11, 24 | jca 306 |
. . . 4
|
| 26 | snssi 3777 |
. . . . 5
| |
| 27 | fss 5439 |
. . . . . 6
| |
| 28 | 27 | ancoms 268 |
. . . . 5
|
| 29 | 26, 28 | sylan 283 |
. . . 4
|
| 30 | 25, 29 | impbii 126 |
. . 3
|
| 31 | fsng 5755 |
. . . . 5
| |
| 32 | 2, 31 | mpan 424 |
. . . 4
|
| 33 | 32 | anbi2d 464 |
. . 3
|
| 34 | 30, 33 | bitrid 192 |
. 2
|
| 35 | 7, 9, 34 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 |
| This theorem is referenced by: fnressn 5772 fressnfv 5773 mapsnconst 6783 elixpsn 6824 en1 6893 |
| Copyright terms: Public domain | W3C validator |