ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn2 Unicode version

Theorem fsn2 5732
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1  |-  A  e. 
_V
Assertion
Ref Expression
fsn2  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )

Proof of Theorem fsn2
StepHypRef Expression
1 ffn 5403 . . 3  |-  ( F : { A } --> B  ->  F  Fn  { A } )
2 fsn2.1 . . . . 5  |-  A  e. 
_V
32snid 3649 . . . 4  |-  A  e. 
{ A }
4 funfvex 5571 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  _V )
54funfni 5354 . . . 4  |-  ( ( F  Fn  { A }  /\  A  e.  { A } )  ->  ( F `  A )  e.  _V )
63, 5mpan2 425 . . 3  |-  ( F  Fn  { A }  ->  ( F `  A
)  e.  _V )
71, 6syl 14 . 2  |-  ( F : { A } --> B  ->  ( F `  A )  e.  _V )
8 elex 2771 . . 3  |-  ( ( F `  A )  e.  B  ->  ( F `  A )  e.  _V )
98adantr 276 . 2  |-  ( ( ( F `  A
)  e.  B  /\  F  =  { <. A , 
( F `  A
) >. } )  -> 
( F `  A
)  e.  _V )
10 ffvelcdm 5691 . . . . . 6  |-  ( ( F : { A }
--> B  /\  A  e. 
{ A } )  ->  ( F `  A )  e.  B
)
113, 10mpan2 425 . . . . 5  |-  ( F : { A } --> B  ->  ( F `  A )  e.  B
)
12 dffn3 5414 . . . . . . . 8  |-  ( F  Fn  { A }  <->  F : { A } --> ran  F )
1312biimpi 120 . . . . . . 7  |-  ( F  Fn  { A }  ->  F : { A }
--> ran  F )
14 imadmrn 5015 . . . . . . . . . 10  |-  ( F
" dom  F )  =  ran  F
15 fndm 5353 . . . . . . . . . . 11  |-  ( F  Fn  { A }  ->  dom  F  =  { A } )
1615imaeq2d 5005 . . . . . . . . . 10  |-  ( F  Fn  { A }  ->  ( F " dom  F )  =  ( F
" { A }
) )
1714, 16eqtr3id 2240 . . . . . . . . 9  |-  ( F  Fn  { A }  ->  ran  F  =  ( F " { A } ) )
18 fnsnfv 5616 . . . . . . . . . 10  |-  ( ( F  Fn  { A }  /\  A  e.  { A } )  ->  { ( F `  A ) }  =  ( F
" { A }
) )
193, 18mpan2 425 . . . . . . . . 9  |-  ( F  Fn  { A }  ->  { ( F `  A ) }  =  ( F " { A } ) )
2017, 19eqtr4d 2229 . . . . . . . 8  |-  ( F  Fn  { A }  ->  ran  F  =  {
( F `  A
) } )
21 feq3 5388 . . . . . . . 8  |-  ( ran 
F  =  { ( F `  A ) }  ->  ( F : { A } --> ran  F  <->  F : { A } --> { ( F `  A ) } ) )
2220, 21syl 14 . . . . . . 7  |-  ( F  Fn  { A }  ->  ( F : { A } --> ran  F  <->  F : { A } --> { ( F `  A ) } ) )
2313, 22mpbid 147 . . . . . 6  |-  ( F  Fn  { A }  ->  F : { A }
--> { ( F `  A ) } )
241, 23syl 14 . . . . 5  |-  ( F : { A } --> B  ->  F : { A } --> { ( F `
 A ) } )
2511, 24jca 306 . . . 4  |-  ( F : { A } --> B  ->  ( ( F `
 A )  e.  B  /\  F : { A } --> { ( F `  A ) } ) )
26 snssi 3762 . . . . 5  |-  ( ( F `  A )  e.  B  ->  { ( F `  A ) }  C_  B )
27 fss 5415 . . . . . 6  |-  ( ( F : { A }
--> { ( F `  A ) }  /\  { ( F `  A
) }  C_  B
)  ->  F : { A } --> B )
2827ancoms 268 . . . . 5  |-  ( ( { ( F `  A ) }  C_  B  /\  F : { A } --> { ( F `
 A ) } )  ->  F : { A } --> B )
2926, 28sylan 283 . . . 4  |-  ( ( ( F `  A
)  e.  B  /\  F : { A } --> { ( F `  A ) } )  ->  F : { A } --> B )
3025, 29impbii 126 . . 3  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F : { A }
--> { ( F `  A ) } ) )
31 fsng 5731 . . . . 5  |-  ( ( A  e.  _V  /\  ( F `  A )  e.  _V )  -> 
( F : { A } --> { ( F `
 A ) }  <-> 
F  =  { <. A ,  ( F `  A ) >. } ) )
322, 31mpan 424 . . . 4  |-  ( ( F `  A )  e.  _V  ->  ( F : { A } --> { ( F `  A ) }  <->  F  =  { <. A ,  ( F `  A )
>. } ) )
3332anbi2d 464 . . 3  |-  ( ( F `  A )  e.  _V  ->  (
( ( F `  A )  e.  B  /\  F : { A }
--> { ( F `  A ) } )  <-> 
( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) ) )
3430, 33bitrid 192 . 2  |-  ( ( F `  A )  e.  _V  ->  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) ) )
357, 9, 34pm5.21nii 705 1  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153   {csn 3618   <.cop 3621   dom cdm 4659   ran crn 4660   "cima 4662    Fn wfn 5249   -->wf 5250   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262
This theorem is referenced by:  fnressn  5744  fressnfv  5745  mapsnconst  6748  elixpsn  6789  en1  6853
  Copyright terms: Public domain W3C validator