ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn2 Unicode version

Theorem fsn2 5754
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1  |-  A  e. 
_V
Assertion
Ref Expression
fsn2  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )

Proof of Theorem fsn2
StepHypRef Expression
1 ffn 5425 . . 3  |-  ( F : { A } --> B  ->  F  Fn  { A } )
2 fsn2.1 . . . . 5  |-  A  e. 
_V
32snid 3664 . . . 4  |-  A  e. 
{ A }
4 funfvex 5593 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  _V )
54funfni 5376 . . . 4  |-  ( ( F  Fn  { A }  /\  A  e.  { A } )  ->  ( F `  A )  e.  _V )
63, 5mpan2 425 . . 3  |-  ( F  Fn  { A }  ->  ( F `  A
)  e.  _V )
71, 6syl 14 . 2  |-  ( F : { A } --> B  ->  ( F `  A )  e.  _V )
8 elex 2783 . . 3  |-  ( ( F `  A )  e.  B  ->  ( F `  A )  e.  _V )
98adantr 276 . 2  |-  ( ( ( F `  A
)  e.  B  /\  F  =  { <. A , 
( F `  A
) >. } )  -> 
( F `  A
)  e.  _V )
10 ffvelcdm 5713 . . . . . 6  |-  ( ( F : { A }
--> B  /\  A  e. 
{ A } )  ->  ( F `  A )  e.  B
)
113, 10mpan2 425 . . . . 5  |-  ( F : { A } --> B  ->  ( F `  A )  e.  B
)
12 dffn3 5436 . . . . . . . 8  |-  ( F  Fn  { A }  <->  F : { A } --> ran  F )
1312biimpi 120 . . . . . . 7  |-  ( F  Fn  { A }  ->  F : { A }
--> ran  F )
14 imadmrn 5032 . . . . . . . . . 10  |-  ( F
" dom  F )  =  ran  F
15 fndm 5373 . . . . . . . . . . 11  |-  ( F  Fn  { A }  ->  dom  F  =  { A } )
1615imaeq2d 5022 . . . . . . . . . 10  |-  ( F  Fn  { A }  ->  ( F " dom  F )  =  ( F
" { A }
) )
1714, 16eqtr3id 2252 . . . . . . . . 9  |-  ( F  Fn  { A }  ->  ran  F  =  ( F " { A } ) )
18 fnsnfv 5638 . . . . . . . . . 10  |-  ( ( F  Fn  { A }  /\  A  e.  { A } )  ->  { ( F `  A ) }  =  ( F
" { A }
) )
193, 18mpan2 425 . . . . . . . . 9  |-  ( F  Fn  { A }  ->  { ( F `  A ) }  =  ( F " { A } ) )
2017, 19eqtr4d 2241 . . . . . . . 8  |-  ( F  Fn  { A }  ->  ran  F  =  {
( F `  A
) } )
21 feq3 5410 . . . . . . . 8  |-  ( ran 
F  =  { ( F `  A ) }  ->  ( F : { A } --> ran  F  <->  F : { A } --> { ( F `  A ) } ) )
2220, 21syl 14 . . . . . . 7  |-  ( F  Fn  { A }  ->  ( F : { A } --> ran  F  <->  F : { A } --> { ( F `  A ) } ) )
2313, 22mpbid 147 . . . . . 6  |-  ( F  Fn  { A }  ->  F : { A }
--> { ( F `  A ) } )
241, 23syl 14 . . . . 5  |-  ( F : { A } --> B  ->  F : { A } --> { ( F `
 A ) } )
2511, 24jca 306 . . . 4  |-  ( F : { A } --> B  ->  ( ( F `
 A )  e.  B  /\  F : { A } --> { ( F `  A ) } ) )
26 snssi 3777 . . . . 5  |-  ( ( F `  A )  e.  B  ->  { ( F `  A ) }  C_  B )
27 fss 5437 . . . . . 6  |-  ( ( F : { A }
--> { ( F `  A ) }  /\  { ( F `  A
) }  C_  B
)  ->  F : { A } --> B )
2827ancoms 268 . . . . 5  |-  ( ( { ( F `  A ) }  C_  B  /\  F : { A } --> { ( F `
 A ) } )  ->  F : { A } --> B )
2926, 28sylan 283 . . . 4  |-  ( ( ( F `  A
)  e.  B  /\  F : { A } --> { ( F `  A ) } )  ->  F : { A } --> B )
3025, 29impbii 126 . . 3  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F : { A }
--> { ( F `  A ) } ) )
31 fsng 5753 . . . . 5  |-  ( ( A  e.  _V  /\  ( F `  A )  e.  _V )  -> 
( F : { A } --> { ( F `
 A ) }  <-> 
F  =  { <. A ,  ( F `  A ) >. } ) )
322, 31mpan 424 . . . 4  |-  ( ( F `  A )  e.  _V  ->  ( F : { A } --> { ( F `  A ) }  <->  F  =  { <. A ,  ( F `  A )
>. } ) )
3332anbi2d 464 . . 3  |-  ( ( F `  A )  e.  _V  ->  (
( ( F `  A )  e.  B  /\  F : { A }
--> { ( F `  A ) } )  <-> 
( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) ) )
3430, 33bitrid 192 . 2  |-  ( ( F `  A )  e.  _V  ->  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) ) )
357, 9, 34pm5.21nii 706 1  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   {csn 3633   <.cop 3636   dom cdm 4675   ran crn 4676   "cima 4678    Fn wfn 5266   -->wf 5267   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
This theorem is referenced by:  fnressn  5770  fressnfv  5771  mapsnconst  6781  elixpsn  6822  en1  6891
  Copyright terms: Public domain W3C validator