Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsn2 | Unicode version |
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.) |
Ref | Expression |
---|---|
fsn2.1 |
Ref | Expression |
---|---|
fsn2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5347 | . . 3 | |
2 | fsn2.1 | . . . . 5 | |
3 | 2 | snid 3614 | . . . 4 |
4 | funfvex 5513 | . . . . 5 | |
5 | 4 | funfni 5298 | . . . 4 |
6 | 3, 5 | mpan2 423 | . . 3 |
7 | 1, 6 | syl 14 | . 2 |
8 | elex 2741 | . . 3 | |
9 | 8 | adantr 274 | . 2 |
10 | ffvelrn 5629 | . . . . . 6 | |
11 | 3, 10 | mpan2 423 | . . . . 5 |
12 | dffn3 5358 | . . . . . . . 8 | |
13 | 12 | biimpi 119 | . . . . . . 7 |
14 | imadmrn 4963 | . . . . . . . . . 10 | |
15 | fndm 5297 | . . . . . . . . . . 11 | |
16 | 15 | imaeq2d 4953 | . . . . . . . . . 10 |
17 | 14, 16 | eqtr3id 2217 | . . . . . . . . 9 |
18 | fnsnfv 5555 | . . . . . . . . . 10 | |
19 | 3, 18 | mpan2 423 | . . . . . . . . 9 |
20 | 17, 19 | eqtr4d 2206 | . . . . . . . 8 |
21 | feq3 5332 | . . . . . . . 8 | |
22 | 20, 21 | syl 14 | . . . . . . 7 |
23 | 13, 22 | mpbid 146 | . . . . . 6 |
24 | 1, 23 | syl 14 | . . . . 5 |
25 | 11, 24 | jca 304 | . . . 4 |
26 | snssi 3724 | . . . . 5 | |
27 | fss 5359 | . . . . . 6 | |
28 | 27 | ancoms 266 | . . . . 5 |
29 | 26, 28 | sylan 281 | . . . 4 |
30 | 25, 29 | impbii 125 | . . 3 |
31 | fsng 5669 | . . . . 5 | |
32 | 2, 31 | mpan 422 | . . . 4 |
33 | 32 | anbi2d 461 | . . 3 |
34 | 30, 33 | syl5bb 191 | . 2 |
35 | 7, 9, 34 | pm5.21nii 699 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 wss 3121 csn 3583 cop 3586 cdm 4611 crn 4612 cima 4614 wfn 5193 wf 5194 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 |
This theorem is referenced by: fnressn 5682 fressnfv 5683 mapsnconst 6672 elixpsn 6713 en1 6777 |
Copyright terms: Public domain | W3C validator |