| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsn2 | Unicode version | ||
| Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.) |
| Ref | Expression |
|---|---|
| fsn2.1 |
|
| Ref | Expression |
|---|---|
| fsn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5473 |
. . 3
| |
| 2 | fsn2.1 |
. . . . 5
| |
| 3 | 2 | snid 3697 |
. . . 4
|
| 4 | funfvex 5644 |
. . . . 5
| |
| 5 | 4 | funfni 5423 |
. . . 4
|
| 6 | 3, 5 | mpan2 425 |
. . 3
|
| 7 | 1, 6 | syl 14 |
. 2
|
| 8 | elex 2811 |
. . 3
| |
| 9 | 8 | adantr 276 |
. 2
|
| 10 | ffvelcdm 5768 |
. . . . . 6
| |
| 11 | 3, 10 | mpan2 425 |
. . . . 5
|
| 12 | dffn3 5484 |
. . . . . . . 8
| |
| 13 | 12 | biimpi 120 |
. . . . . . 7
|
| 14 | imadmrn 5078 |
. . . . . . . . . 10
| |
| 15 | fndm 5420 |
. . . . . . . . . . 11
| |
| 16 | 15 | imaeq2d 5068 |
. . . . . . . . . 10
|
| 17 | 14, 16 | eqtr3id 2276 |
. . . . . . . . 9
|
| 18 | fnsnfv 5693 |
. . . . . . . . . 10
| |
| 19 | 3, 18 | mpan2 425 |
. . . . . . . . 9
|
| 20 | 17, 19 | eqtr4d 2265 |
. . . . . . . 8
|
| 21 | feq3 5458 |
. . . . . . . 8
| |
| 22 | 20, 21 | syl 14 |
. . . . . . 7
|
| 23 | 13, 22 | mpbid 147 |
. . . . . 6
|
| 24 | 1, 23 | syl 14 |
. . . . 5
|
| 25 | 11, 24 | jca 306 |
. . . 4
|
| 26 | snssi 3812 |
. . . . 5
| |
| 27 | fss 5485 |
. . . . . 6
| |
| 28 | 27 | ancoms 268 |
. . . . 5
|
| 29 | 26, 28 | sylan 283 |
. . . 4
|
| 30 | 25, 29 | impbii 126 |
. . 3
|
| 31 | fsng 5808 |
. . . . 5
| |
| 32 | 2, 31 | mpan 424 |
. . . 4
|
| 33 | 32 | anbi2d 464 |
. . 3
|
| 34 | 30, 33 | bitrid 192 |
. 2
|
| 35 | 7, 9, 34 | pm5.21nii 709 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 |
| This theorem is referenced by: fnressn 5825 fressnfv 5826 mapsnconst 6841 elixpsn 6882 en1 6951 |
| Copyright terms: Public domain | W3C validator |