| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsn2 | Unicode version | ||
| Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.) |
| Ref | Expression |
|---|---|
| fsn2.1 |
|
| Ref | Expression |
|---|---|
| fsn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5410 |
. . 3
| |
| 2 | fsn2.1 |
. . . . 5
| |
| 3 | 2 | snid 3654 |
. . . 4
|
| 4 | funfvex 5578 |
. . . . 5
| |
| 5 | 4 | funfni 5361 |
. . . 4
|
| 6 | 3, 5 | mpan2 425 |
. . 3
|
| 7 | 1, 6 | syl 14 |
. 2
|
| 8 | elex 2774 |
. . 3
| |
| 9 | 8 | adantr 276 |
. 2
|
| 10 | ffvelcdm 5698 |
. . . . . 6
| |
| 11 | 3, 10 | mpan2 425 |
. . . . 5
|
| 12 | dffn3 5421 |
. . . . . . . 8
| |
| 13 | 12 | biimpi 120 |
. . . . . . 7
|
| 14 | imadmrn 5020 |
. . . . . . . . . 10
| |
| 15 | fndm 5358 |
. . . . . . . . . . 11
| |
| 16 | 15 | imaeq2d 5010 |
. . . . . . . . . 10
|
| 17 | 14, 16 | eqtr3id 2243 |
. . . . . . . . 9
|
| 18 | fnsnfv 5623 |
. . . . . . . . . 10
| |
| 19 | 3, 18 | mpan2 425 |
. . . . . . . . 9
|
| 20 | 17, 19 | eqtr4d 2232 |
. . . . . . . 8
|
| 21 | feq3 5395 |
. . . . . . . 8
| |
| 22 | 20, 21 | syl 14 |
. . . . . . 7
|
| 23 | 13, 22 | mpbid 147 |
. . . . . 6
|
| 24 | 1, 23 | syl 14 |
. . . . 5
|
| 25 | 11, 24 | jca 306 |
. . . 4
|
| 26 | snssi 3767 |
. . . . 5
| |
| 27 | fss 5422 |
. . . . . 6
| |
| 28 | 27 | ancoms 268 |
. . . . 5
|
| 29 | 26, 28 | sylan 283 |
. . . 4
|
| 30 | 25, 29 | impbii 126 |
. . 3
|
| 31 | fsng 5738 |
. . . . 5
| |
| 32 | 2, 31 | mpan 424 |
. . . 4
|
| 33 | 32 | anbi2d 464 |
. . 3
|
| 34 | 30, 33 | bitrid 192 |
. 2
|
| 35 | 7, 9, 34 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 |
| This theorem is referenced by: fnressn 5751 fressnfv 5752 mapsnconst 6762 elixpsn 6803 en1 6867 |
| Copyright terms: Public domain | W3C validator |