ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn2 Unicode version

Theorem fsn2 5809
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.)
Hypothesis
Ref Expression
fsn2.1  |-  A  e. 
_V
Assertion
Ref Expression
fsn2  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )

Proof of Theorem fsn2
StepHypRef Expression
1 ffn 5473 . . 3  |-  ( F : { A } --> B  ->  F  Fn  { A } )
2 fsn2.1 . . . . 5  |-  A  e. 
_V
32snid 3697 . . . 4  |-  A  e. 
{ A }
4 funfvex 5644 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  _V )
54funfni 5423 . . . 4  |-  ( ( F  Fn  { A }  /\  A  e.  { A } )  ->  ( F `  A )  e.  _V )
63, 5mpan2 425 . . 3  |-  ( F  Fn  { A }  ->  ( F `  A
)  e.  _V )
71, 6syl 14 . 2  |-  ( F : { A } --> B  ->  ( F `  A )  e.  _V )
8 elex 2811 . . 3  |-  ( ( F `  A )  e.  B  ->  ( F `  A )  e.  _V )
98adantr 276 . 2  |-  ( ( ( F `  A
)  e.  B  /\  F  =  { <. A , 
( F `  A
) >. } )  -> 
( F `  A
)  e.  _V )
10 ffvelcdm 5768 . . . . . 6  |-  ( ( F : { A }
--> B  /\  A  e. 
{ A } )  ->  ( F `  A )  e.  B
)
113, 10mpan2 425 . . . . 5  |-  ( F : { A } --> B  ->  ( F `  A )  e.  B
)
12 dffn3 5484 . . . . . . . 8  |-  ( F  Fn  { A }  <->  F : { A } --> ran  F )
1312biimpi 120 . . . . . . 7  |-  ( F  Fn  { A }  ->  F : { A }
--> ran  F )
14 imadmrn 5078 . . . . . . . . . 10  |-  ( F
" dom  F )  =  ran  F
15 fndm 5420 . . . . . . . . . . 11  |-  ( F  Fn  { A }  ->  dom  F  =  { A } )
1615imaeq2d 5068 . . . . . . . . . 10  |-  ( F  Fn  { A }  ->  ( F " dom  F )  =  ( F
" { A }
) )
1714, 16eqtr3id 2276 . . . . . . . . 9  |-  ( F  Fn  { A }  ->  ran  F  =  ( F " { A } ) )
18 fnsnfv 5693 . . . . . . . . . 10  |-  ( ( F  Fn  { A }  /\  A  e.  { A } )  ->  { ( F `  A ) }  =  ( F
" { A }
) )
193, 18mpan2 425 . . . . . . . . 9  |-  ( F  Fn  { A }  ->  { ( F `  A ) }  =  ( F " { A } ) )
2017, 19eqtr4d 2265 . . . . . . . 8  |-  ( F  Fn  { A }  ->  ran  F  =  {
( F `  A
) } )
21 feq3 5458 . . . . . . . 8  |-  ( ran 
F  =  { ( F `  A ) }  ->  ( F : { A } --> ran  F  <->  F : { A } --> { ( F `  A ) } ) )
2220, 21syl 14 . . . . . . 7  |-  ( F  Fn  { A }  ->  ( F : { A } --> ran  F  <->  F : { A } --> { ( F `  A ) } ) )
2313, 22mpbid 147 . . . . . 6  |-  ( F  Fn  { A }  ->  F : { A }
--> { ( F `  A ) } )
241, 23syl 14 . . . . 5  |-  ( F : { A } --> B  ->  F : { A } --> { ( F `
 A ) } )
2511, 24jca 306 . . . 4  |-  ( F : { A } --> B  ->  ( ( F `
 A )  e.  B  /\  F : { A } --> { ( F `  A ) } ) )
26 snssi 3812 . . . . 5  |-  ( ( F `  A )  e.  B  ->  { ( F `  A ) }  C_  B )
27 fss 5485 . . . . . 6  |-  ( ( F : { A }
--> { ( F `  A ) }  /\  { ( F `  A
) }  C_  B
)  ->  F : { A } --> B )
2827ancoms 268 . . . . 5  |-  ( ( { ( F `  A ) }  C_  B  /\  F : { A } --> { ( F `
 A ) } )  ->  F : { A } --> B )
2926, 28sylan 283 . . . 4  |-  ( ( ( F `  A
)  e.  B  /\  F : { A } --> { ( F `  A ) } )  ->  F : { A } --> B )
3025, 29impbii 126 . . 3  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F : { A }
--> { ( F `  A ) } ) )
31 fsng 5808 . . . . 5  |-  ( ( A  e.  _V  /\  ( F `  A )  e.  _V )  -> 
( F : { A } --> { ( F `
 A ) }  <-> 
F  =  { <. A ,  ( F `  A ) >. } ) )
322, 31mpan 424 . . . 4  |-  ( ( F `  A )  e.  _V  ->  ( F : { A } --> { ( F `  A ) }  <->  F  =  { <. A ,  ( F `  A )
>. } ) )
3332anbi2d 464 . . 3  |-  ( ( F `  A )  e.  _V  ->  (
( ( F `  A )  e.  B  /\  F : { A }
--> { ( F `  A ) } )  <-> 
( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) ) )
3430, 33bitrid 192 . 2  |-  ( ( F `  A )  e.  _V  ->  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) ) )
357, 9, 34pm5.21nii 709 1  |-  ( F : { A } --> B 
<->  ( ( F `  A )  e.  B  /\  F  =  { <. A ,  ( F `
 A ) >. } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {csn 3666   <.cop 3669   dom cdm 4719   ran crn 4720   "cima 4722    Fn wfn 5313   -->wf 5314   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by:  fnressn  5825  fressnfv  5826  mapsnconst  6841  elixpsn  6882  en1  6951
  Copyright terms: Public domain W3C validator