| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsn2 | Unicode version | ||
| Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by NM, 19-May-2004.) |
| Ref | Expression |
|---|---|
| fsn2.1 |
|
| Ref | Expression |
|---|---|
| fsn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5445 |
. . 3
| |
| 2 | fsn2.1 |
. . . . 5
| |
| 3 | 2 | snid 3674 |
. . . 4
|
| 4 | funfvex 5616 |
. . . . 5
| |
| 5 | 4 | funfni 5395 |
. . . 4
|
| 6 | 3, 5 | mpan2 425 |
. . 3
|
| 7 | 1, 6 | syl 14 |
. 2
|
| 8 | elex 2788 |
. . 3
| |
| 9 | 8 | adantr 276 |
. 2
|
| 10 | ffvelcdm 5736 |
. . . . . 6
| |
| 11 | 3, 10 | mpan2 425 |
. . . . 5
|
| 12 | dffn3 5456 |
. . . . . . . 8
| |
| 13 | 12 | biimpi 120 |
. . . . . . 7
|
| 14 | imadmrn 5051 |
. . . . . . . . . 10
| |
| 15 | fndm 5392 |
. . . . . . . . . . 11
| |
| 16 | 15 | imaeq2d 5041 |
. . . . . . . . . 10
|
| 17 | 14, 16 | eqtr3id 2254 |
. . . . . . . . 9
|
| 18 | fnsnfv 5661 |
. . . . . . . . . 10
| |
| 19 | 3, 18 | mpan2 425 |
. . . . . . . . 9
|
| 20 | 17, 19 | eqtr4d 2243 |
. . . . . . . 8
|
| 21 | feq3 5430 |
. . . . . . . 8
| |
| 22 | 20, 21 | syl 14 |
. . . . . . 7
|
| 23 | 13, 22 | mpbid 147 |
. . . . . 6
|
| 24 | 1, 23 | syl 14 |
. . . . 5
|
| 25 | 11, 24 | jca 306 |
. . . 4
|
| 26 | snssi 3788 |
. . . . 5
| |
| 27 | fss 5457 |
. . . . . 6
| |
| 28 | 27 | ancoms 268 |
. . . . 5
|
| 29 | 26, 28 | sylan 283 |
. . . 4
|
| 30 | 25, 29 | impbii 126 |
. . 3
|
| 31 | fsng 5776 |
. . . . 5
| |
| 32 | 2, 31 | mpan 424 |
. . . 4
|
| 33 | 32 | anbi2d 464 |
. . 3
|
| 34 | 30, 33 | bitrid 192 |
. 2
|
| 35 | 7, 9, 34 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 |
| This theorem is referenced by: fnressn 5793 fressnfv 5794 mapsnconst 6804 elixpsn 6845 en1 6914 |
| Copyright terms: Public domain | W3C validator |