ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frnd Unicode version

Theorem frnd 5376
Description: Deduction form of frn 5375. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
frnd.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
frnd  |-  ( ph  ->  ran  F  C_  B
)

Proof of Theorem frnd
StepHypRef Expression
1 frnd.1 . 2  |-  ( ph  ->  F : A --> B )
2 frn 5375 . 2  |-  ( F : A --> B  ->  ran  F  C_  B )
31, 2syl 14 1  |-  ( ph  ->  ran  F  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3130   ran crn 4628   -->wf 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-f 5221
This theorem is referenced by:  difinfsn  7099  ennnfonelemfun  12418  ennnfonelemf1  12419  mhmima  12875  tgrest  13672  resttopon  13674  rest0  13682  cnrest2r  13740  cnptoprest2  13743  lmss  13749  txbasval  13770  upxp  13775  uptx  13777  hmeores  13818  unirnblps  13925  unirnbl  13926
  Copyright terms: Public domain W3C validator