ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frnd Unicode version

Theorem frnd 5437
Description: Deduction form of frn 5436. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
frnd.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
frnd  |-  ( ph  ->  ran  F  C_  B
)

Proof of Theorem frnd
StepHypRef Expression
1 frnd.1 . 2  |-  ( ph  ->  F : A --> B )
2 frn 5436 . 2  |-  ( F : A --> B  ->  ran  F  C_  B )
31, 2syl 14 1  |-  ( ph  ->  ran  F  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3166   ran crn 4677   -->wf 5268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-f 5276
This theorem is referenced by:  difinfsn  7204  ccatrn  11068  swrdrn  11113  pfxrn  11141  4sqlem11  12757  ennnfonelemfun  12821  ennnfonelemf1  12822  mhmima  13356  ghmrn  13626  conjnmz  13648  tgrest  14674  resttopon  14676  rest0  14684  cnrest2r  14742  cnptoprest2  14745  lmss  14751  txbasval  14772  upxp  14777  uptx  14779  hmeores  14820  unirnblps  14927  unirnbl  14928  lgseisenlem4  15583
  Copyright terms: Public domain W3C validator