ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frnd Unicode version

Theorem frnd 5367
Description: Deduction form of frn 5366. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
frnd.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
frnd  |-  ( ph  ->  ran  F  C_  B
)

Proof of Theorem frnd
StepHypRef Expression
1 frnd.1 . 2  |-  ( ph  ->  F : A --> B )
2 frn 5366 . 2  |-  ( F : A --> B  ->  ran  F  C_  B )
31, 2syl 14 1  |-  ( ph  ->  ran  F  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3127   ran crn 4621   -->wf 5204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-f 5212
This theorem is referenced by:  difinfsn  7089  ennnfonelemfun  12385  ennnfonelemf1  12386  mhmima  12737  tgrest  13240  resttopon  13242  rest0  13250  cnrest2r  13308  cnptoprest2  13311  lmss  13317  txbasval  13338  upxp  13343  uptx  13345  hmeores  13386  unirnblps  13493  unirnbl  13494
  Copyright terms: Public domain W3C validator