ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frnd Unicode version

Theorem frnd 5238
Description: Deduction form of frn 5237. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
frnd.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
frnd  |-  ( ph  ->  ran  F  C_  B
)

Proof of Theorem frnd
StepHypRef Expression
1 frnd.1 . 2  |-  ( ph  ->  F : A --> B )
2 frn 5237 . 2  |-  ( F : A --> B  ->  ran  F  C_  B )
31, 2syl 14 1  |-  ( ph  ->  ran  F  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3035   ran crn 4498   -->wf 5075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-f 5083
This theorem is referenced by:  difinfsn  6935  ennnfonelemfun  11769  ennnfonelemf1  11770  tgrest  12175  resttopon  12177  rest0  12185  cnrest2r  12242  cnptoprest2  12245  lmss  12251  txbasval  12272  upxp  12277  uptx  12279  unirnblps  12405  unirnbl  12406
  Copyright terms: Public domain W3C validator