ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frnd Unicode version

Theorem frnd 5357
Description: Deduction form of frn 5356. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
frnd.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
frnd  |-  ( ph  ->  ran  F  C_  B
)

Proof of Theorem frnd
StepHypRef Expression
1 frnd.1 . 2  |-  ( ph  ->  F : A --> B )
2 frn 5356 . 2  |-  ( F : A --> B  ->  ran  F  C_  B )
31, 2syl 14 1  |-  ( ph  ->  ran  F  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3121   ran crn 4612   -->wf 5194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-f 5202
This theorem is referenced by:  difinfsn  7077  ennnfonelemfun  12372  ennnfonelemf1  12373  mhmima  12706  tgrest  12963  resttopon  12965  rest0  12973  cnrest2r  13031  cnptoprest2  13034  lmss  13040  txbasval  13061  upxp  13066  uptx  13068  hmeores  13109  unirnblps  13216  unirnbl  13217
  Copyright terms: Public domain W3C validator