ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frnd Unicode version

Theorem frnd 5414
Description: Deduction form of frn 5413. The range of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
frnd.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
frnd  |-  ( ph  ->  ran  F  C_  B
)

Proof of Theorem frnd
StepHypRef Expression
1 frnd.1 . 2  |-  ( ph  ->  F : A --> B )
2 frn 5413 . 2  |-  ( F : A --> B  ->  ran  F  C_  B )
31, 2syl 14 1  |-  ( ph  ->  ran  F  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3154   ran crn 4661   -->wf 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-f 5259
This theorem is referenced by:  difinfsn  7161  4sqlem11  12542  ennnfonelemfun  12577  ennnfonelemf1  12578  mhmima  13066  ghmrn  13330  conjnmz  13352  tgrest  14348  resttopon  14350  rest0  14358  cnrest2r  14416  cnptoprest2  14419  lmss  14425  txbasval  14446  upxp  14451  uptx  14453  hmeores  14494  unirnblps  14601  unirnbl  14602  lgseisenlem4  15230
  Copyright terms: Public domain W3C validator