ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2ndf Unicode version

Theorem fo2ndf 6294
Description: The  2nd (second component of an ordered pair) function restricted to a function  F is a function from  F onto the range of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
fo2ndf  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F -onto-> ran  F
)

Proof of Theorem fo2ndf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5410 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
2 dffn3 5421 . . . 4  |-  ( F  Fn  A  <->  F : A
--> ran  F )
31, 2sylib 122 . . 3  |-  ( F : A --> B  ->  F : A --> ran  F
)
4 f2ndf 6293 . . 3  |-  ( F : A --> ran  F  ->  ( 2nd  |`  F ) : F --> ran  F
)
53, 4syl 14 . 2  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> ran  F
)
62, 4sylbi 121 . . . . 5  |-  ( F  Fn  A  ->  ( 2nd  |`  F ) : F --> ran  F )
71, 6syl 14 . . . 4  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> ran  F
)
8 frn 5419 . . . 4  |-  ( ( 2nd  |`  F ) : F --> ran  F  ->  ran  ( 2nd  |`  F ) 
C_  ran  F )
97, 8syl 14 . . 3  |-  ( F : A --> B  ->  ran  ( 2nd  |`  F ) 
C_  ran  F )
10 elrn2g 4857 . . . . . 6  |-  ( y  e.  ran  F  -> 
( y  e.  ran  F  <->  E. x <. x ,  y
>.  e.  F ) )
1110ibi 176 . . . . 5  |-  ( y  e.  ran  F  ->  E. x <. x ,  y
>.  e.  F )
12 fvres 5585 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  F  ->  ( ( 2nd  |`  F ) `  <. x ,  y
>. )  =  ( 2nd `  <. x ,  y
>. ) )
1312adantl 277 . . . . . . . . 9  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  (
( 2nd  |`  F ) `
 <. x ,  y
>. )  =  ( 2nd `  <. x ,  y
>. ) )
14 vex 2766 . . . . . . . . . 10  |-  x  e. 
_V
15 vex 2766 . . . . . . . . . 10  |-  y  e. 
_V
1614, 15op2nd 6214 . . . . . . . . 9  |-  ( 2nd `  <. x ,  y
>. )  =  y
1713, 16eqtr2di 2246 . . . . . . . 8  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  y  =  ( ( 2nd  |`  F ) `  <. x ,  y >. )
)
18 f2ndf 6293 . . . . . . . . . 10  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> B )
19 ffn 5410 . . . . . . . . . 10  |-  ( ( 2nd  |`  F ) : F --> B  ->  ( 2nd  |`  F )  Fn  F )
2018, 19syl 14 . . . . . . . . 9  |-  ( F : A --> B  -> 
( 2nd  |`  F )  Fn  F )
21 fnfvelrn 5697 . . . . . . . . 9  |-  ( ( ( 2nd  |`  F )  Fn  F  /\  <. x ,  y >.  e.  F
)  ->  ( ( 2nd  |`  F ) `  <. x ,  y >.
)  e.  ran  ( 2nd  |`  F ) )
2220, 21sylan 283 . . . . . . . 8  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  (
( 2nd  |`  F ) `
 <. x ,  y
>. )  e.  ran  ( 2nd  |`  F )
)
2317, 22eqeltrd 2273 . . . . . . 7  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  y  e.  ran  ( 2nd  |`  F ) )
2423ex 115 . . . . . 6  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  ->  y  e.  ran  ( 2nd  |`  F ) ) )
2524exlimdv 1833 . . . . 5  |-  ( F : A --> B  -> 
( E. x <. x ,  y >.  e.  F  ->  y  e.  ran  ( 2nd  |`  F ) ) )
2611, 25syl5 32 . . . 4  |-  ( F : A --> B  -> 
( y  e.  ran  F  ->  y  e.  ran  ( 2nd  |`  F )
) )
2726ssrdv 3190 . . 3  |-  ( F : A --> B  ->  ran  F  C_  ran  ( 2nd  |`  F ) )
289, 27eqssd 3201 . 2  |-  ( F : A --> B  ->  ran  ( 2nd  |`  F )  =  ran  F )
29 dffo2 5487 . 2  |-  ( ( 2nd  |`  F ) : F -onto-> ran  F  <->  ( ( 2nd  |`  F ) : F --> ran  F  /\  ran  ( 2nd  |`  F )  =  ran  F ) )
305, 28, 29sylanbrc 417 1  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F -onto-> ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    e. wcel 2167    C_ wss 3157   <.cop 3626   ran crn 4665    |` cres 4666    Fn wfn 5254   -->wf 5255   -onto->wfo 5257   ` cfv 5259   2ndc2nd 6206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fo 5265  df-fv 5267  df-2nd 6208
This theorem is referenced by:  f1o2ndf1  6295
  Copyright terms: Public domain W3C validator