| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fo2ndf | Unicode version | ||
| Description: The |
| Ref | Expression |
|---|---|
| fo2ndf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 5473 |
. . . 4
| |
| 2 | dffn3 5484 |
. . . 4
| |
| 3 | 1, 2 | sylib 122 |
. . 3
|
| 4 | f2ndf 6372 |
. . 3
| |
| 5 | 3, 4 | syl 14 |
. 2
|
| 6 | 2, 4 | sylbi 121 |
. . . . 5
|
| 7 | 1, 6 | syl 14 |
. . . 4
|
| 8 | frn 5482 |
. . . 4
| |
| 9 | 7, 8 | syl 14 |
. . 3
|
| 10 | elrn2g 4912 |
. . . . . 6
| |
| 11 | 10 | ibi 176 |
. . . . 5
|
| 12 | fvres 5651 |
. . . . . . . . . 10
| |
| 13 | 12 | adantl 277 |
. . . . . . . . 9
|
| 14 | vex 2802 |
. . . . . . . . . 10
| |
| 15 | vex 2802 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | op2nd 6293 |
. . . . . . . . 9
|
| 17 | 13, 16 | eqtr2di 2279 |
. . . . . . . 8
|
| 18 | f2ndf 6372 |
. . . . . . . . . 10
| |
| 19 | ffn 5473 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | syl 14 |
. . . . . . . . 9
|
| 21 | fnfvelrn 5767 |
. . . . . . . . 9
| |
| 22 | 20, 21 | sylan 283 |
. . . . . . . 8
|
| 23 | 17, 22 | eqeltrd 2306 |
. . . . . . 7
|
| 24 | 23 | ex 115 |
. . . . . 6
|
| 25 | 24 | exlimdv 1865 |
. . . . 5
|
| 26 | 11, 25 | syl5 32 |
. . . 4
|
| 27 | 26 | ssrdv 3230 |
. . 3
|
| 28 | 9, 27 | eqssd 3241 |
. 2
|
| 29 | dffo2 5552 |
. 2
| |
| 30 | 5, 28, 29 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 df-2nd 6287 |
| This theorem is referenced by: f1o2ndf1 6374 |
| Copyright terms: Public domain | W3C validator |