Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fo2ndf | Unicode version |
Description: The (second component of an ordered pair) function restricted to a function is a function from onto the range of . (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
Ref | Expression |
---|---|
fo2ndf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5347 | . . . 4 | |
2 | dffn3 5358 | . . . 4 | |
3 | 1, 2 | sylib 121 | . . 3 |
4 | f2ndf 6205 | . . 3 | |
5 | 3, 4 | syl 14 | . 2 |
6 | 2, 4 | sylbi 120 | . . . . 5 |
7 | 1, 6 | syl 14 | . . . 4 |
8 | frn 5356 | . . . 4 | |
9 | 7, 8 | syl 14 | . . 3 |
10 | elrn2g 4801 | . . . . . 6 | |
11 | 10 | ibi 175 | . . . . 5 |
12 | fvres 5520 | . . . . . . . . . 10 | |
13 | 12 | adantl 275 | . . . . . . . . 9 |
14 | vex 2733 | . . . . . . . . . 10 | |
15 | vex 2733 | . . . . . . . . . 10 | |
16 | 14, 15 | op2nd 6126 | . . . . . . . . 9 |
17 | 13, 16 | eqtr2di 2220 | . . . . . . . 8 |
18 | f2ndf 6205 | . . . . . . . . . 10 | |
19 | ffn 5347 | . . . . . . . . . 10 | |
20 | 18, 19 | syl 14 | . . . . . . . . 9 |
21 | fnfvelrn 5628 | . . . . . . . . 9 | |
22 | 20, 21 | sylan 281 | . . . . . . . 8 |
23 | 17, 22 | eqeltrd 2247 | . . . . . . 7 |
24 | 23 | ex 114 | . . . . . 6 |
25 | 24 | exlimdv 1812 | . . . . 5 |
26 | 11, 25 | syl5 32 | . . . 4 |
27 | 26 | ssrdv 3153 | . . 3 |
28 | 9, 27 | eqssd 3164 | . 2 |
29 | dffo2 5424 | . 2 | |
30 | 5, 28, 29 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 wss 3121 cop 3586 crn 4612 cres 4613 wfn 5193 wf 5194 wfo 5196 cfv 5198 c2nd 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 df-2nd 6120 |
This theorem is referenced by: f1o2ndf1 6207 |
Copyright terms: Public domain | W3C validator |