Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fo2ndf | Unicode version |
Description: The (second component of an ordered pair) function restricted to a function is a function from onto the range of . (Contributed by Alexander van der Vekens, 4-Feb-2018.) |
Ref | Expression |
---|---|
fo2ndf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 5337 | . . . 4 | |
2 | dffn3 5348 | . . . 4 | |
3 | 1, 2 | sylib 121 | . . 3 |
4 | f2ndf 6194 | . . 3 | |
5 | 3, 4 | syl 14 | . 2 |
6 | 2, 4 | sylbi 120 | . . . . 5 |
7 | 1, 6 | syl 14 | . . . 4 |
8 | frn 5346 | . . . 4 | |
9 | 7, 8 | syl 14 | . . 3 |
10 | elrn2g 4794 | . . . . . 6 | |
11 | 10 | ibi 175 | . . . . 5 |
12 | fvres 5510 | . . . . . . . . . 10 | |
13 | 12 | adantl 275 | . . . . . . . . 9 |
14 | vex 2729 | . . . . . . . . . 10 | |
15 | vex 2729 | . . . . . . . . . 10 | |
16 | 14, 15 | op2nd 6115 | . . . . . . . . 9 |
17 | 13, 16 | eqtr2di 2216 | . . . . . . . 8 |
18 | f2ndf 6194 | . . . . . . . . . 10 | |
19 | ffn 5337 | . . . . . . . . . 10 | |
20 | 18, 19 | syl 14 | . . . . . . . . 9 |
21 | fnfvelrn 5617 | . . . . . . . . 9 | |
22 | 20, 21 | sylan 281 | . . . . . . . 8 |
23 | 17, 22 | eqeltrd 2243 | . . . . . . 7 |
24 | 23 | ex 114 | . . . . . 6 |
25 | 24 | exlimdv 1807 | . . . . 5 |
26 | 11, 25 | syl5 32 | . . . 4 |
27 | 26 | ssrdv 3148 | . . 3 |
28 | 9, 27 | eqssd 3159 | . 2 |
29 | dffo2 5414 | . 2 | |
30 | 5, 28, 29 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 wss 3116 cop 3579 crn 4605 cres 4606 wfn 5183 wf 5184 wfo 5186 cfv 5188 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-2nd 6109 |
This theorem is referenced by: f1o2ndf1 6196 |
Copyright terms: Public domain | W3C validator |