ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2ndf Unicode version

Theorem fo2ndf 6230
Description: The  2nd (second component of an ordered pair) function restricted to a function  F is a function from  F onto the range of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
fo2ndf  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F -onto-> ran  F
)

Proof of Theorem fo2ndf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5367 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
2 dffn3 5378 . . . 4  |-  ( F  Fn  A  <->  F : A
--> ran  F )
31, 2sylib 122 . . 3  |-  ( F : A --> B  ->  F : A --> ran  F
)
4 f2ndf 6229 . . 3  |-  ( F : A --> ran  F  ->  ( 2nd  |`  F ) : F --> ran  F
)
53, 4syl 14 . 2  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> ran  F
)
62, 4sylbi 121 . . . . 5  |-  ( F  Fn  A  ->  ( 2nd  |`  F ) : F --> ran  F )
71, 6syl 14 . . . 4  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> ran  F
)
8 frn 5376 . . . 4  |-  ( ( 2nd  |`  F ) : F --> ran  F  ->  ran  ( 2nd  |`  F ) 
C_  ran  F )
97, 8syl 14 . . 3  |-  ( F : A --> B  ->  ran  ( 2nd  |`  F ) 
C_  ran  F )
10 elrn2g 4819 . . . . . 6  |-  ( y  e.  ran  F  -> 
( y  e.  ran  F  <->  E. x <. x ,  y
>.  e.  F ) )
1110ibi 176 . . . . 5  |-  ( y  e.  ran  F  ->  E. x <. x ,  y
>.  e.  F )
12 fvres 5541 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  F  ->  ( ( 2nd  |`  F ) `  <. x ,  y
>. )  =  ( 2nd `  <. x ,  y
>. ) )
1312adantl 277 . . . . . . . . 9  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  (
( 2nd  |`  F ) `
 <. x ,  y
>. )  =  ( 2nd `  <. x ,  y
>. ) )
14 vex 2742 . . . . . . . . . 10  |-  x  e. 
_V
15 vex 2742 . . . . . . . . . 10  |-  y  e. 
_V
1614, 15op2nd 6150 . . . . . . . . 9  |-  ( 2nd `  <. x ,  y
>. )  =  y
1713, 16eqtr2di 2227 . . . . . . . 8  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  y  =  ( ( 2nd  |`  F ) `  <. x ,  y >. )
)
18 f2ndf 6229 . . . . . . . . . 10  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> B )
19 ffn 5367 . . . . . . . . . 10  |-  ( ( 2nd  |`  F ) : F --> B  ->  ( 2nd  |`  F )  Fn  F )
2018, 19syl 14 . . . . . . . . 9  |-  ( F : A --> B  -> 
( 2nd  |`  F )  Fn  F )
21 fnfvelrn 5650 . . . . . . . . 9  |-  ( ( ( 2nd  |`  F )  Fn  F  /\  <. x ,  y >.  e.  F
)  ->  ( ( 2nd  |`  F ) `  <. x ,  y >.
)  e.  ran  ( 2nd  |`  F ) )
2220, 21sylan 283 . . . . . . . 8  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  (
( 2nd  |`  F ) `
 <. x ,  y
>. )  e.  ran  ( 2nd  |`  F )
)
2317, 22eqeltrd 2254 . . . . . . 7  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  y  e.  ran  ( 2nd  |`  F ) )
2423ex 115 . . . . . 6  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  ->  y  e.  ran  ( 2nd  |`  F ) ) )
2524exlimdv 1819 . . . . 5  |-  ( F : A --> B  -> 
( E. x <. x ,  y >.  e.  F  ->  y  e.  ran  ( 2nd  |`  F ) ) )
2611, 25syl5 32 . . . 4  |-  ( F : A --> B  -> 
( y  e.  ran  F  ->  y  e.  ran  ( 2nd  |`  F )
) )
2726ssrdv 3163 . . 3  |-  ( F : A --> B  ->  ran  F  C_  ran  ( 2nd  |`  F ) )
289, 27eqssd 3174 . 2  |-  ( F : A --> B  ->  ran  ( 2nd  |`  F )  =  ran  F )
29 dffo2 5444 . 2  |-  ( ( 2nd  |`  F ) : F -onto-> ran  F  <->  ( ( 2nd  |`  F ) : F --> ran  F  /\  ran  ( 2nd  |`  F )  =  ran  F ) )
305, 28, 29sylanbrc 417 1  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F -onto-> ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148    C_ wss 3131   <.cop 3597   ran crn 4629    |` cres 4630    Fn wfn 5213   -->wf 5214   -onto->wfo 5216   ` cfv 5218   2ndc2nd 6142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-2nd 6144
This theorem is referenced by:  f1o2ndf1  6231
  Copyright terms: Public domain W3C validator