ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2ndf Unicode version

Theorem fo2ndf 6280
Description: The  2nd (second component of an ordered pair) function restricted to a function  F is a function from  F onto the range of  F. (Contributed by Alexander van der Vekens, 4-Feb-2018.)
Assertion
Ref Expression
fo2ndf  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F -onto-> ran  F
)

Proof of Theorem fo2ndf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffn 5403 . . . 4  |-  ( F : A --> B  ->  F  Fn  A )
2 dffn3 5414 . . . 4  |-  ( F  Fn  A  <->  F : A
--> ran  F )
31, 2sylib 122 . . 3  |-  ( F : A --> B  ->  F : A --> ran  F
)
4 f2ndf 6279 . . 3  |-  ( F : A --> ran  F  ->  ( 2nd  |`  F ) : F --> ran  F
)
53, 4syl 14 . 2  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> ran  F
)
62, 4sylbi 121 . . . . 5  |-  ( F  Fn  A  ->  ( 2nd  |`  F ) : F --> ran  F )
71, 6syl 14 . . . 4  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> ran  F
)
8 frn 5412 . . . 4  |-  ( ( 2nd  |`  F ) : F --> ran  F  ->  ran  ( 2nd  |`  F ) 
C_  ran  F )
97, 8syl 14 . . 3  |-  ( F : A --> B  ->  ran  ( 2nd  |`  F ) 
C_  ran  F )
10 elrn2g 4852 . . . . . 6  |-  ( y  e.  ran  F  -> 
( y  e.  ran  F  <->  E. x <. x ,  y
>.  e.  F ) )
1110ibi 176 . . . . 5  |-  ( y  e.  ran  F  ->  E. x <. x ,  y
>.  e.  F )
12 fvres 5578 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  F  ->  ( ( 2nd  |`  F ) `  <. x ,  y
>. )  =  ( 2nd `  <. x ,  y
>. ) )
1312adantl 277 . . . . . . . . 9  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  (
( 2nd  |`  F ) `
 <. x ,  y
>. )  =  ( 2nd `  <. x ,  y
>. ) )
14 vex 2763 . . . . . . . . . 10  |-  x  e. 
_V
15 vex 2763 . . . . . . . . . 10  |-  y  e. 
_V
1614, 15op2nd 6200 . . . . . . . . 9  |-  ( 2nd `  <. x ,  y
>. )  =  y
1713, 16eqtr2di 2243 . . . . . . . 8  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  y  =  ( ( 2nd  |`  F ) `  <. x ,  y >. )
)
18 f2ndf 6279 . . . . . . . . . 10  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F --> B )
19 ffn 5403 . . . . . . . . . 10  |-  ( ( 2nd  |`  F ) : F --> B  ->  ( 2nd  |`  F )  Fn  F )
2018, 19syl 14 . . . . . . . . 9  |-  ( F : A --> B  -> 
( 2nd  |`  F )  Fn  F )
21 fnfvelrn 5690 . . . . . . . . 9  |-  ( ( ( 2nd  |`  F )  Fn  F  /\  <. x ,  y >.  e.  F
)  ->  ( ( 2nd  |`  F ) `  <. x ,  y >.
)  e.  ran  ( 2nd  |`  F ) )
2220, 21sylan 283 . . . . . . . 8  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  (
( 2nd  |`  F ) `
 <. x ,  y
>. )  e.  ran  ( 2nd  |`  F )
)
2317, 22eqeltrd 2270 . . . . . . 7  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  y  e.  ran  ( 2nd  |`  F ) )
2423ex 115 . . . . . 6  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  ->  y  e.  ran  ( 2nd  |`  F ) ) )
2524exlimdv 1830 . . . . 5  |-  ( F : A --> B  -> 
( E. x <. x ,  y >.  e.  F  ->  y  e.  ran  ( 2nd  |`  F ) ) )
2611, 25syl5 32 . . . 4  |-  ( F : A --> B  -> 
( y  e.  ran  F  ->  y  e.  ran  ( 2nd  |`  F )
) )
2726ssrdv 3185 . . 3  |-  ( F : A --> B  ->  ran  F  C_  ran  ( 2nd  |`  F ) )
289, 27eqssd 3196 . 2  |-  ( F : A --> B  ->  ran  ( 2nd  |`  F )  =  ran  F )
29 dffo2 5480 . 2  |-  ( ( 2nd  |`  F ) : F -onto-> ran  F  <->  ( ( 2nd  |`  F ) : F --> ran  F  /\  ran  ( 2nd  |`  F )  =  ran  F ) )
305, 28, 29sylanbrc 417 1  |-  ( F : A --> B  -> 
( 2nd  |`  F ) : F -onto-> ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164    C_ wss 3153   <.cop 3621   ran crn 4660    |` cres 4661    Fn wfn 5249   -->wf 5250   -onto->wfo 5252   ` cfv 5254   2ndc2nd 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fo 5260  df-fv 5262  df-2nd 6194
This theorem is referenced by:  f1o2ndf1  6281
  Copyright terms: Public domain W3C validator