Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfint2 | Unicode version |
Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
dfint2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-int 3841 | . 2 | |
2 | df-ral 2458 | . . 3 | |
3 | 2 | abbii 2291 | . 2 |
4 | 1, 3 | eqtr4i 2199 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1351 wceq 1353 wcel 2146 cab 2161 wral 2453 cint 3840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-ral 2458 df-int 3841 |
This theorem is referenced by: inteq 3843 nfint 3850 intiin 3936 |
Copyright terms: Public domain | W3C validator |