ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfint2 Unicode version

Theorem dfint2 3685
Description: Alternate definition of class intersection. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
dfint2  |-  |^| A  =  { x  |  A. y  e.  A  x  e.  y }
Distinct variable group:    x, y, A

Proof of Theorem dfint2
StepHypRef Expression
1 df-int 3684 . 2  |-  |^| A  =  { x  |  A. y ( y  e.  A  ->  x  e.  y ) }
2 df-ral 2364 . . 3  |-  ( A. y  e.  A  x  e.  y  <->  A. y ( y  e.  A  ->  x  e.  y ) )
32abbii 2203 . 2  |-  { x  |  A. y  e.  A  x  e.  y }  =  { x  |  A. y ( y  e.  A  ->  x  e.  y ) }
41, 3eqtr4i 2111 1  |-  |^| A  =  { x  |  A. y  e.  A  x  e.  y }
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1287    = wceq 1289    e. wcel 1438   {cab 2074   A.wral 2359   |^|cint 3683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-ral 2364  df-int 3684
This theorem is referenced by:  inteq  3686  nfint  3693  intiin  3779
  Copyright terms: Public domain W3C validator