ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteq Unicode version

Theorem inteq 3925
Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999.)
Assertion
Ref Expression
inteq  |-  ( A  =  B  ->  |^| A  =  |^| B )

Proof of Theorem inteq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2728 . . 3  |-  ( A  =  B  ->  ( A. y  e.  A  x  e.  y  <->  A. y  e.  B  x  e.  y ) )
21abbidv 2347 . 2  |-  ( A  =  B  ->  { x  |  A. y  e.  A  x  e.  y }  =  { x  |  A. y  e.  B  x  e.  y } )
3 dfint2 3924 . 2  |-  |^| A  =  { x  |  A. y  e.  A  x  e.  y }
4 dfint2 3924 . 2  |-  |^| B  =  { x  |  A. y  e.  B  x  e.  y }
52, 3, 43eqtr4g 2287 1  |-  ( A  =  B  ->  |^| A  =  |^| B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   {cab 2215   A.wral 2508   |^|cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-int 3923
This theorem is referenced by:  inteqi  3926  inteqd  3927  uniintsnr  3958  rint0  3961  intexr  4233  onintexmid  4664  elreldm  4949  elxp5  5216  1stval2  6299  fundmen  6957  xpsnen  6976  fiintim  7089  elfir  7136  fiinopn  14672  bj-intexr  16229
  Copyright terms: Public domain W3C validator