ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfint Unicode version

Theorem nfint 3745
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Hypothesis
Ref Expression
nfint.1  |-  F/_ x A
Assertion
Ref Expression
nfint  |-  F/_ x |^| A

Proof of Theorem nfint
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 3737 . 2  |-  |^| A  =  { y  |  A. z  e.  A  y  e.  z }
2 nfint.1 . . . 4  |-  F/_ x A
3 nfv 1489 . . . 4  |-  F/ x  y  e.  z
42, 3nfralxy 2443 . . 3  |-  F/ x A. z  e.  A  y  e.  z
54nfab 2258 . 2  |-  F/_ x { y  |  A. z  e.  A  y  e.  z }
61, 5nfcxfr 2250 1  |-  F/_ x |^| A
Colors of variables: wff set class
Syntax hints:   {cab 2099   F/_wnfc 2240   A.wral 2388   |^|cint 3735
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-int 3736
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator