ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfint Unicode version

Theorem nfint 3817
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Hypothesis
Ref Expression
nfint.1  |-  F/_ x A
Assertion
Ref Expression
nfint  |-  F/_ x |^| A

Proof of Theorem nfint
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 3809 . 2  |-  |^| A  =  { y  |  A. z  e.  A  y  e.  z }
2 nfint.1 . . . 4  |-  F/_ x A
3 nfv 1508 . . . 4  |-  F/ x  y  e.  z
42, 3nfralxy 2495 . . 3  |-  F/ x A. z  e.  A  y  e.  z
54nfab 2304 . 2  |-  F/_ x { y  |  A. z  e.  A  y  e.  z }
61, 5nfcxfr 2296 1  |-  F/_ x |^| A
Colors of variables: wff set class
Syntax hints:   {cab 2143   F/_wnfc 2286   A.wral 2435   |^|cint 3807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-int 3808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator