ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfint Unicode version

Theorem nfint 3841
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Hypothesis
Ref Expression
nfint.1  |-  F/_ x A
Assertion
Ref Expression
nfint  |-  F/_ x |^| A

Proof of Theorem nfint
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 3833 . 2  |-  |^| A  =  { y  |  A. z  e.  A  y  e.  z }
2 nfint.1 . . . 4  |-  F/_ x A
3 nfv 1521 . . . 4  |-  F/ x  y  e.  z
42, 3nfralxy 2508 . . 3  |-  F/ x A. z  e.  A  y  e.  z
54nfab 2317 . 2  |-  F/_ x { y  |  A. z  e.  A  y  e.  z }
61, 5nfcxfr 2309 1  |-  F/_ x |^| A
Colors of variables: wff set class
Syntax hints:   {cab 2156   F/_wnfc 2299   A.wral 2448   |^|cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-int 3832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator