ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfint Unicode version

Theorem nfint 3895
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Hypothesis
Ref Expression
nfint.1  |-  F/_ x A
Assertion
Ref Expression
nfint  |-  F/_ x |^| A

Proof of Theorem nfint
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 3887 . 2  |-  |^| A  =  { y  |  A. z  e.  A  y  e.  z }
2 nfint.1 . . . 4  |-  F/_ x A
3 nfv 1551 . . . 4  |-  F/ x  y  e.  z
42, 3nfralxy 2544 . . 3  |-  F/ x A. z  e.  A  y  e.  z
54nfab 2353 . 2  |-  F/_ x { y  |  A. z  e.  A  y  e.  z }
61, 5nfcxfr 2345 1  |-  F/_ x |^| A
Colors of variables: wff set class
Syntax hints:   {cab 2191   F/_wnfc 2335   A.wral 2484   |^|cint 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-int 3886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator