ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intiin Unicode version

Theorem intiin 3920
Description: Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
intiin  |-  |^| A  =  |^|_ x  e.  A  x
Distinct variable group:    x, A

Proof of Theorem intiin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfint2 3826 . 2  |-  |^| A  =  { y  |  A. x  e.  A  y  e.  x }
2 df-iin 3869 . 2  |-  |^|_ x  e.  A  x  =  { y  |  A. x  e.  A  y  e.  x }
31, 2eqtr4i 2189 1  |-  |^| A  =  |^|_ x  e.  A  x
Colors of variables: wff set class
Syntax hints:    = wceq 1343   {cab 2151   A.wral 2444   |^|cint 3824   |^|_ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-ral 2449  df-int 3825  df-iin 3869
This theorem is referenced by:  relint  4728  ixpintm  6691
  Copyright terms: Public domain W3C validator