| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2sb6rf | Unicode version | ||
| Description: Reversed double substitution. (Contributed by NM, 3-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| 2sb5rf.1 | 
 | 
| 2sb5rf.2 | 
 | 
| Ref | Expression | 
|---|---|
| 2sb6rf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2sb5rf.1 | 
. . 3
 | |
| 2 | 1 | sb6rf 1867 | 
. 2
 | 
| 3 | 19.21v 1887 | 
. . . 4
 | |
| 4 | sbcom2 2006 | 
. . . . . . 7
 | |
| 5 | 4 | imbi2i 226 | 
. . . . . 6
 | 
| 6 | impexp 263 | 
. . . . . 6
 | |
| 7 | 5, 6 | bitri 184 | 
. . . . 5
 | 
| 8 | 7 | albii 1484 | 
. . . 4
 | 
| 9 | 2sb5rf.2 | 
. . . . . . 7
 | |
| 10 | 9 | hbsbv 1960 | 
. . . . . 6
 | 
| 11 | 10 | sb6rf 1867 | 
. . . . 5
 | 
| 12 | 11 | imbi2i 226 | 
. . . 4
 | 
| 13 | 3, 8, 12 | 3bitr4ri 213 | 
. . 3
 | 
| 14 | 13 | albii 1484 | 
. 2
 | 
| 15 | 2, 14 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |