ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sb6rf Unicode version

Theorem 2sb6rf 1977
Description: Reversed double substitution. (Contributed by NM, 3-Feb-2005.)
Hypotheses
Ref Expression
2sb5rf.1  |-  ( ph  ->  A. z ph )
2sb5rf.2  |-  ( ph  ->  A. w ph )
Assertion
Ref Expression
2sb6rf  |-  ( ph  <->  A. z A. w ( ( z  =  x  /\  w  =  y )  ->  [ z  /  x ] [ w  /  y ] ph ) )
Distinct variable groups:    x, y    x, w    y, z    z, w
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem 2sb6rf
StepHypRef Expression
1 2sb5rf.1 . . 3  |-  ( ph  ->  A. z ph )
21sb6rf 1840 . 2  |-  ( ph  <->  A. z ( z  =  x  ->  [ z  /  x ] ph )
)
3 19.21v 1860 . . . 4  |-  ( A. w ( z  =  x  ->  ( w  =  y  ->  [ w  /  y ] [
z  /  x ] ph ) )  <->  ( z  =  x  ->  A. w
( w  =  y  ->  [ w  / 
y ] [ z  /  x ] ph ) ) )
4 sbcom2 1974 . . . . . . 7  |-  ( [ z  /  x ] [ w  /  y ] ph  <->  [ w  /  y ] [ z  /  x ] ph )
54imbi2i 225 . . . . . 6  |-  ( ( ( z  =  x  /\  w  =  y )  ->  [ z  /  x ] [ w  /  y ] ph ) 
<->  ( ( z  =  x  /\  w  =  y )  ->  [ w  /  y ] [
z  /  x ] ph ) )
6 impexp 261 . . . . . 6  |-  ( ( ( z  =  x  /\  w  =  y )  ->  [ w  /  y ] [
z  /  x ] ph )  <->  ( z  =  x  ->  ( w  =  y  ->  [ w  /  y ] [
z  /  x ] ph ) ) )
75, 6bitri 183 . . . . 5  |-  ( ( ( z  =  x  /\  w  =  y )  ->  [ z  /  x ] [ w  /  y ] ph ) 
<->  ( z  =  x  ->  ( w  =  y  ->  [ w  /  y ] [
z  /  x ] ph ) ) )
87albii 1457 . . . 4  |-  ( A. w ( ( z  =  x  /\  w  =  y )  ->  [ z  /  x ] [ w  /  y ] ph )  <->  A. w
( z  =  x  ->  ( w  =  y  ->  [ w  /  y ] [
z  /  x ] ph ) ) )
9 2sb5rf.2 . . . . . . 7  |-  ( ph  ->  A. w ph )
109hbsbv 1928 . . . . . 6  |-  ( [ z  /  x ] ph  ->  A. w [ z  /  x ] ph )
1110sb6rf 1840 . . . . 5  |-  ( [ z  /  x ] ph 
<-> 
A. w ( w  =  y  ->  [ w  /  y ] [
z  /  x ] ph ) )
1211imbi2i 225 . . . 4  |-  ( ( z  =  x  ->  [ z  /  x ] ph )  <->  ( z  =  x  ->  A. w
( w  =  y  ->  [ w  / 
y ] [ z  /  x ] ph ) ) )
133, 8, 123bitr4ri 212 . . 3  |-  ( ( z  =  x  ->  [ z  /  x ] ph )  <->  A. w
( ( z  =  x  /\  w  =  y )  ->  [ z  /  x ] [
w  /  y ]
ph ) )
1413albii 1457 . 2  |-  ( A. z ( z  =  x  ->  [ z  /  x ] ph )  <->  A. z A. w ( ( z  =  x  /\  w  =  y )  ->  [ z  /  x ] [ w  /  y ] ph ) )
152, 14bitri 183 1  |-  ( ph  <->  A. z A. w ( ( z  =  x  /\  w  =  y )  ->  [ z  /  x ] [ w  /  y ] ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1340   [wsb 1749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522
This theorem depends on definitions:  df-bi 116  df-nf 1448  df-sb 1750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator