ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb7f Unicode version

Theorem sb7f 1965
Description: This version of dfsb7 1964 does not require that  ph and  z be distinct. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-17 1506 i.e. that doesn't have the concept of a variable not occurring in a wff. (df-sb 1736 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
sb7f.1  |-  ( ph  ->  A. z ph )
Assertion
Ref Expression
sb7f  |-  ( [ y  /  x ] ph 
<->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
) )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sb7f
StepHypRef Expression
1 sb5 1859 . . 3  |-  ( [ z  /  x ] ph 
<->  E. x ( x  =  z  /\  ph ) )
21sbbii 1738 . 2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  z ] E. x ( x  =  z  /\  ph ) )
3 sb7f.1 . . 3  |-  ( ph  ->  A. z ph )
43sbco2vh 1916 . 2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
5 sb5 1859 . 2  |-  ( [ y  /  z ] E. x ( x  =  z  /\  ph ) 
<->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
) )
62, 4, 53bitr3i 209 1  |-  ( [ y  /  x ] ph 
<->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1329   E.wex 1468   [wsb 1735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator