ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb5 Unicode version

Theorem sb5 1875
Description: Equivalence for substitution. Similar to Theorem 6.1 of [Quine] p. 40. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
Assertion
Ref Expression
sb5  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb5
StepHypRef Expression
1 sb6 1874 . 2  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
2 sb56 1873 . 2  |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )
31, 2bitr4i 186 1  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341   E.wex 1480   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  sbnv  1876  sborv  1878  sbi2v  1880  nfsbxy  1930  nfsbxyt  1931  2sb5  1971  dfsb7  1979  sb7f  1980  sbexyz  1991  sbc5  2974
  Copyright terms: Public domain W3C validator