ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb5 Unicode version

Theorem sb5 1911
Description: Equivalence for substitution. Similar to Theorem 6.1 of [Quine] p. 40. (Contributed by NM, 18-Aug-1993.) (Revised by NM, 14-Apr-2008.)
Assertion
Ref Expression
sb5  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb5
StepHypRef Expression
1 sb6 1910 . 2  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
2 sb56 1909 . 2  |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )
31, 2bitr4i 187 1  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371   E.wex 1515   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-sb 1786
This theorem is referenced by:  sbnv  1912  sborv  1914  sbi2v  1916  nfsbxy  1970  nfsbxyt  1971  2sb5  2011  dfsb7  2019  sb7f  2020  sbexyz  2031  sbc5  3022
  Copyright terms: Public domain W3C validator