![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfsb7 | GIF version |
Description: An alternate definition of proper substitution df-sb 1774. By introducing a dummy variable 𝑧 in the definiens, we are able to eliminate any distinct variable restrictions among the variables 𝑥, 𝑦, and 𝜑 of the definiendum. No distinct variable conflicts arise because 𝑧 effectively insulates 𝑥 from 𝑦. To achieve this, we use a chain of two substitutions in the form of sb5 1899, first 𝑧 for 𝑥 then 𝑦 for 𝑧. Compare Definition 2.1'' of [Quine] p. 17. Theorem sb7f 2008 provides a version where 𝜑 and 𝑧 don't have to be distinct. (Contributed by NM, 28-Jan-2004.) |
Ref | Expression |
---|---|
dfsb7 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb5 1899 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑)) | |
2 | 1 | sbbii 1776 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧]∃𝑥(𝑥 = 𝑧 ∧ 𝜑)) |
3 | ax-17 1537 | . . 3 ⊢ (𝜑 → ∀𝑧𝜑) | |
4 | 3 | sbco2vh 1961 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
5 | sb5 1899 | . 2 ⊢ ([𝑦 / 𝑧]∃𝑥(𝑥 = 𝑧 ∧ 𝜑) ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑))) | |
6 | 2, 4, 5 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧 ∧ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1503 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |