Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfpr | Unicode version |
Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.) |
Ref | Expression |
---|---|
nfpr.1 | |
nfpr.2 |
Ref | Expression |
---|---|
nfpr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 3595 | . 2 | |
2 | nfpr.1 | . . . . 5 | |
3 | 2 | nfeq2 2320 | . . . 4 |
4 | nfpr.2 | . . . . 5 | |
5 | 4 | nfeq2 2320 | . . . 4 |
6 | 3, 5 | nfor 1562 | . . 3 |
7 | 6 | nfab 2313 | . 2 |
8 | 1, 7 | nfcxfr 2305 | 1 |
Colors of variables: wff set class |
Syntax hints: wo 698 wceq 1343 cab 2151 wnfc 2295 cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 |
This theorem is referenced by: nfsn 3636 nfop 3774 |
Copyright terms: Public domain | W3C validator |