ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfpr Unicode version

Theorem nfpr 3668
Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.)
Hypotheses
Ref Expression
nfpr.1  |-  F/_ x A
nfpr.2  |-  F/_ x B
Assertion
Ref Expression
nfpr  |-  F/_ x { A ,  B }

Proof of Theorem nfpr
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfpr2 3637 . 2  |-  { A ,  B }  =  {
y  |  ( y  =  A  \/  y  =  B ) }
2 nfpr.1 . . . . 5  |-  F/_ x A
32nfeq2 2348 . . . 4  |-  F/ x  y  =  A
4 nfpr.2 . . . . 5  |-  F/_ x B
54nfeq2 2348 . . . 4  |-  F/ x  y  =  B
63, 5nfor 1585 . . 3  |-  F/ x
( y  =  A  \/  y  =  B )
76nfab 2341 . 2  |-  F/_ x { y  |  ( y  =  A  \/  y  =  B ) }
81, 7nfcxfr 2333 1  |-  F/_ x { A ,  B }
Colors of variables: wff set class
Syntax hints:    \/ wo 709    = wceq 1364   {cab 2179   F/_wnfc 2323   {cpr 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625
This theorem is referenced by:  nfsn  3678  nfop  3820
  Copyright terms: Public domain W3C validator