| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbi2i | Unicode version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abbiri.1 |
|
| Ref | Expression |
|---|---|
| abbi2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeq2 2314 |
. 2
| |
| 2 | abbiri.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: abid2 2326 cbvralcsf 3156 cbvrexcsf 3157 cbvreucsf 3158 cbvrabcsf 3159 symdifxor 3439 dfnul2 3462 dfpr2 3652 dftp2 3682 0iin 3986 pwpwab 4015 epse 4389 fv3 5599 fo1st 6243 fo2nd 6244 xp2 6259 tfrlem3 6397 tfr1onlem3 6424 mapsn 6777 ixpconstg 6794 ixp0x 6813 nnzrab 9396 nn0zrab 9397 |
| Copyright terms: Public domain | W3C validator |