ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi2i Unicode version

Theorem abbi2i 2304
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
abbiri.1  |-  ( x  e.  A  <->  ph )
Assertion
Ref Expression
abbi2i  |-  A  =  { x  |  ph }
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem abbi2i
StepHypRef Expression
1 abeq2 2298 . 2  |-  ( A  =  { x  | 
ph }  <->  A. x
( x  e.  A  <->  ph ) )
2 abbiri.1 . 2  |-  ( x  e.  A  <->  ph )
31, 2mpgbir 1464 1  |-  A  =  { x  |  ph }
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2160   {cab 2175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185
This theorem is referenced by:  abid2  2310  cbvralcsf  3134  cbvrexcsf  3135  cbvreucsf  3136  cbvrabcsf  3137  symdifxor  3416  dfnul2  3439  dfpr2  3626  dftp2  3656  0iin  3960  pwpwab  3989  epse  4360  fv3  5557  fo1st  6182  fo2nd  6183  xp2  6198  tfrlem3  6336  tfr1onlem3  6363  mapsn  6716  ixpconstg  6733  ixp0x  6752  nnzrab  9307  nn0zrab  9308
  Copyright terms: Public domain W3C validator