| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbi2i | Unicode version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abbiri.1 |
|
| Ref | Expression |
|---|---|
| abbi2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeq2 2316 |
. 2
| |
| 2 | abbiri.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1477 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: abid2 2328 cbvralcsf 3164 cbvrexcsf 3165 cbvreucsf 3166 cbvrabcsf 3167 symdifxor 3447 dfnul2 3470 dfpr2 3662 dftp2 3692 0iin 4000 pwpwab 4029 epse 4407 fv3 5622 fo1st 6266 fo2nd 6267 xp2 6282 tfrlem3 6420 tfr1onlem3 6447 mapsn 6800 ixpconstg 6817 ixp0x 6836 nnzrab 9431 nn0zrab 9432 |
| Copyright terms: Public domain | W3C validator |