ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq12 Unicode version

Theorem difeq12 3235
Description: Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
difeq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  \  C
)  =  ( B 
\  D ) )

Proof of Theorem difeq12
StepHypRef Expression
1 difeq1 3233 . 2  |-  ( A  =  B  ->  ( A  \  C )  =  ( B  \  C
) )
2 difeq2 3234 . 2  |-  ( C  =  D  ->  ( B  \  C )  =  ( B  \  D
) )
31, 2sylan9eq 2219 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  \  C
)  =  ( B 
\  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    \ cdif 3113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-dif 3118
This theorem is referenced by:  resdif  5454
  Copyright terms: Public domain W3C validator