ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq12 Unicode version

Theorem difeq12 3276
Description: Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
difeq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  \  C
)  =  ( B 
\  D ) )

Proof of Theorem difeq12
StepHypRef Expression
1 difeq1 3274 . 2  |-  ( A  =  B  ->  ( A  \  C )  =  ( B  \  C
) )
2 difeq2 3275 . 2  |-  ( C  =  D  ->  ( B  \  C )  =  ( B  \  D
) )
31, 2sylan9eq 2249 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  \  C
)  =  ( B 
\  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    \ cdif 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-dif 3159
This theorem is referenced by:  resdif  5526
  Copyright terms: Public domain W3C validator