| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eq | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9eq.1 |
|
| sylan9eq.2 |
|
| Ref | Expression |
|---|---|
| sylan9eq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eq.1 |
. 2
| |
| 2 | sylan9eq.2 |
. 2
| |
| 3 | eqtr 2214 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: sylan9req 2250 sylan9eqr 2251 difeq12 3277 uneq12 3313 ineq12 3360 ifeq12 3578 preq12 3702 prprc 3733 preq12b 3801 opeq12 3811 xpeq12 4683 nfimad 5019 coi2 5187 funimass1 5336 f1orescnv 5523 resdif 5529 oveq12 5934 cbvmpov 6006 ovmpog 6061 fvmpopr2d 6063 eqopi 6239 fmpoco 6283 nnaordex 6595 map0g 6756 xpcomco 6894 xpmapenlem 6919 phplem3 6924 phplem4 6925 sbthlemi5 7036 addcmpblnq 7451 ltrnqg 7504 enq0ref 7517 addcmpblnq0 7527 distrlem4prl 7668 distrlem4pru 7669 recexgt0sr 7857 axcnre 7965 cnegexlem2 8219 cnegexlem3 8220 recexap 8697 xaddpnf2 9939 xaddmnf2 9941 rexadd 9944 xaddnemnf 9949 xaddnepnf 9950 xposdif 9974 frec2uzrand 10514 seqeq3 10561 seqf1oglem2 10629 seqf1og 10630 shftcan1 11016 remul2 11055 immul2 11062 fprodssdc 11772 ef0lem 11842 efieq1re 11954 dvdsnegb 11990 dvdscmul 12000 dvds2ln 12006 dvds2add 12007 dvds2sub 12008 gcdn0val 12153 rpmulgcd 12218 lcmval 12256 lcmn0val 12259 odzval 12435 pcmpt 12537 grpsubval 13248 mulgnn0gsum 13334 crngpropd 13671 opprringbg 13712 dvdsrtr 13733 isopn3 14445 dvexp 15031 dvexp2 15032 elply2 15055 lgsval3 15343 lgsdinn0 15373 subctctexmid 15731 |
| Copyright terms: Public domain | W3C validator |