| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eq | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9eq.1 |
|
| sylan9eq.2 |
|
| Ref | Expression |
|---|---|
| sylan9eq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eq.1 |
. 2
| |
| 2 | sylan9eq.2 |
. 2
| |
| 3 | eqtr 2225 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: sylan9req 2261 sylan9eqr 2262 difeq12 3294 uneq12 3330 ineq12 3377 ifeq12 3596 preq12 3722 prprc 3753 preq12b 3824 opeq12 3835 xpeq12 4712 nfimad 5050 coi2 5218 funimass1 5370 f1orescnv 5560 resdif 5566 oveq12 5976 cbvmpov 6048 ovmpog 6103 fvmpopr2d 6105 eqopi 6281 fmpoco 6325 nnaordex 6637 map0g 6798 xpcomco 6946 xpmapenlem 6971 phplem3 6976 phplem4 6977 sbthlemi5 7089 addcmpblnq 7515 ltrnqg 7568 enq0ref 7581 addcmpblnq0 7591 distrlem4prl 7732 distrlem4pru 7733 recexgt0sr 7921 axcnre 8029 cnegexlem2 8283 cnegexlem3 8284 recexap 8761 xaddpnf2 10004 xaddmnf2 10006 rexadd 10009 xaddnemnf 10014 xaddnepnf 10015 xposdif 10039 frec2uzrand 10587 seqeq3 10634 seqf1oglem2 10702 seqf1og 10703 lsw1 11080 swrdccat 11226 ccats1pfxeqbi 11233 shftcan1 11260 remul2 11299 immul2 11306 fprodssdc 12016 ef0lem 12086 efieq1re 12198 dvdsnegb 12234 dvdscmul 12244 dvds2ln 12250 dvds2add 12251 dvds2sub 12252 gcdn0val 12397 rpmulgcd 12462 lcmval 12500 lcmn0val 12503 odzval 12679 pcmpt 12781 grpsubval 13493 mulgnn0gsum 13579 crngpropd 13916 opprringbg 13957 dvdsrtr 13978 isopn3 14712 dvexp 15298 dvexp2 15299 elply2 15322 lgsval3 15610 lgsdinn0 15640 incistruhgr 15801 subctctexmid 16139 |
| Copyright terms: Public domain | W3C validator |