| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eq | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9eq.1 |
|
| sylan9eq.2 |
|
| Ref | Expression |
|---|---|
| sylan9eq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eq.1 |
. 2
| |
| 2 | sylan9eq.2 |
. 2
| |
| 3 | eqtr 2247 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: sylan9req 2283 sylan9eqr 2284 difeq12 3317 uneq12 3353 ineq12 3400 ifeq12 3619 preq12 3745 prprc 3777 preq12b 3848 opeq12 3859 xpeq12 4738 nfimad 5077 coi2 5245 funimass1 5398 f1orescnv 5588 resdif 5594 oveq12 6010 cbvmpov 6084 ovmpog 6139 fvmpopr2d 6141 eqopi 6318 fmpoco 6362 nnaordex 6674 map0g 6835 xpcomco 6985 xpmapenlem 7010 phplem3 7015 phplem4 7016 sbthlemi5 7128 addcmpblnq 7554 ltrnqg 7607 enq0ref 7620 addcmpblnq0 7630 distrlem4prl 7771 distrlem4pru 7772 recexgt0sr 7960 axcnre 8068 cnegexlem2 8322 cnegexlem3 8323 recexap 8800 xaddpnf2 10043 xaddmnf2 10045 rexadd 10048 xaddnemnf 10053 xaddnepnf 10054 xposdif 10078 frec2uzrand 10627 seqeq3 10674 seqf1oglem2 10742 seqf1og 10743 lsw1 11121 swrdccat 11267 ccats1pfxeqbi 11274 shftcan1 11345 remul2 11384 immul2 11391 fprodssdc 12101 ef0lem 12171 efieq1re 12283 dvdsnegb 12319 dvdscmul 12329 dvds2ln 12335 dvds2add 12336 dvds2sub 12337 gcdn0val 12482 rpmulgcd 12547 lcmval 12585 lcmn0val 12588 odzval 12764 pcmpt 12866 grpsubval 13579 mulgnn0gsum 13665 crngpropd 14002 opprringbg 14043 dvdsrtr 14065 isopn3 14799 dvexp 15385 dvexp2 15386 elply2 15409 lgsval3 15697 lgsdinn0 15727 incistruhgr 15890 subctctexmid 16366 |
| Copyright terms: Public domain | W3C validator |