Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9eq | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
sylan9eq.1 | |
sylan9eq.2 |
Ref | Expression |
---|---|
sylan9eq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eq.1 | . 2 | |
2 | sylan9eq.2 | . 2 | |
3 | eqtr 2188 | . 2 | |
4 | 1, 2, 3 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: sylan9req 2224 sylan9eqr 2225 difeq12 3240 uneq12 3276 ineq12 3323 ifeq12 3541 preq12 3660 prprc 3691 preq12b 3755 opeq12 3765 xpeq12 4628 nfimad 4960 coi2 5125 funimass1 5273 f1orescnv 5456 resdif 5462 oveq12 5859 cbvmpov 5930 ovmpog 5984 eqopi 6148 fmpoco 6192 nnaordex 6503 map0g 6662 xpcomco 6800 xpmapenlem 6823 phplem3 6828 phplem4 6829 sbthlemi5 6934 addcmpblnq 7316 ltrnqg 7369 enq0ref 7382 addcmpblnq0 7392 distrlem4prl 7533 distrlem4pru 7534 recexgt0sr 7722 axcnre 7830 cnegexlem2 8082 cnegexlem3 8083 recexap 8558 xaddpnf2 9791 xaddmnf2 9793 rexadd 9796 xaddnemnf 9801 xaddnepnf 9802 xposdif 9826 frec2uzrand 10348 seqeq3 10393 shftcan1 10785 remul2 10824 immul2 10831 fprodssdc 11540 ef0lem 11610 efieq1re 11721 dvdsnegb 11757 dvdscmul 11767 dvds2ln 11773 dvds2add 11774 dvds2sub 11775 gcdn0val 11903 rpmulgcd 11968 lcmval 12004 lcmn0val 12007 odzval 12182 pcmpt 12282 isopn3 12878 dvexp 13428 dvexp2 13429 lgsval3 13672 lgsdinn0 13702 subctctexmid 13994 |
Copyright terms: Public domain | W3C validator |