Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylan9eq | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
sylan9eq.1 | |
sylan9eq.2 |
Ref | Expression |
---|---|
sylan9eq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eq.1 | . 2 | |
2 | sylan9eq.2 | . 2 | |
3 | eqtr 2183 | . 2 | |
4 | 1, 2, 3 | syl2an 287 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: sylan9req 2220 sylan9eqr 2221 difeq12 3235 uneq12 3271 ineq12 3318 ifeq12 3536 preq12 3655 prprc 3686 preq12b 3750 opeq12 3760 xpeq12 4623 nfimad 4955 coi2 5120 funimass1 5265 f1orescnv 5448 resdif 5454 oveq12 5851 cbvmpov 5922 ovmpog 5976 eqopi 6140 fmpoco 6184 nnaordex 6495 map0g 6654 xpcomco 6792 xpmapenlem 6815 phplem3 6820 phplem4 6821 sbthlemi5 6926 addcmpblnq 7308 ltrnqg 7361 enq0ref 7374 addcmpblnq0 7384 distrlem4prl 7525 distrlem4pru 7526 recexgt0sr 7714 axcnre 7822 cnegexlem2 8074 cnegexlem3 8075 recexap 8550 xaddpnf2 9783 xaddmnf2 9785 rexadd 9788 xaddnemnf 9793 xaddnepnf 9794 xposdif 9818 frec2uzrand 10340 seqeq3 10385 shftcan1 10776 remul2 10815 immul2 10822 fprodssdc 11531 ef0lem 11601 efieq1re 11712 dvdsnegb 11748 dvdscmul 11758 dvds2ln 11764 dvds2add 11765 dvds2sub 11766 gcdn0val 11894 rpmulgcd 11959 lcmval 11995 lcmn0val 11998 odzval 12173 pcmpt 12273 isopn3 12765 dvexp 13315 dvexp2 13316 lgsval3 13559 lgsdinn0 13589 subctctexmid 13881 |
Copyright terms: Public domain | W3C validator |