| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eq | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9eq.1 |
|
| sylan9eq.2 |
|
| Ref | Expression |
|---|---|
| sylan9eq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eq.1 |
. 2
| |
| 2 | sylan9eq.2 |
. 2
| |
| 3 | eqtr 2223 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: sylan9req 2259 sylan9eqr 2260 difeq12 3286 uneq12 3322 ineq12 3369 ifeq12 3587 preq12 3712 prprc 3743 preq12b 3811 opeq12 3821 xpeq12 4695 nfimad 5032 coi2 5200 funimass1 5352 f1orescnv 5540 resdif 5546 oveq12 5955 cbvmpov 6027 ovmpog 6082 fvmpopr2d 6084 eqopi 6260 fmpoco 6304 nnaordex 6616 map0g 6777 xpcomco 6923 xpmapenlem 6948 phplem3 6953 phplem4 6954 sbthlemi5 7065 addcmpblnq 7482 ltrnqg 7535 enq0ref 7548 addcmpblnq0 7558 distrlem4prl 7699 distrlem4pru 7700 recexgt0sr 7888 axcnre 7996 cnegexlem2 8250 cnegexlem3 8251 recexap 8728 xaddpnf2 9971 xaddmnf2 9973 rexadd 9976 xaddnemnf 9981 xaddnepnf 9982 xposdif 10006 frec2uzrand 10552 seqeq3 10599 seqf1oglem2 10667 seqf1og 10668 lsw1 11045 shftcan1 11178 remul2 11217 immul2 11224 fprodssdc 11934 ef0lem 12004 efieq1re 12116 dvdsnegb 12152 dvdscmul 12162 dvds2ln 12168 dvds2add 12169 dvds2sub 12170 gcdn0val 12315 rpmulgcd 12380 lcmval 12418 lcmn0val 12421 odzval 12597 pcmpt 12699 grpsubval 13411 mulgnn0gsum 13497 crngpropd 13834 opprringbg 13875 dvdsrtr 13896 isopn3 14630 dvexp 15216 dvexp2 15217 elply2 15240 lgsval3 15528 lgsdinn0 15558 subctctexmid 15974 |
| Copyright terms: Public domain | W3C validator |