![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan9eq | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
sylan9eq.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylan9eq.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylan9eq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eq.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylan9eq.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | eqtr 2211 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2an 289 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: sylan9req 2247 sylan9eqr 2248 difeq12 3273 uneq12 3309 ineq12 3356 ifeq12 3574 preq12 3698 prprc 3729 preq12b 3797 opeq12 3807 xpeq12 4679 nfimad 5015 coi2 5183 funimass1 5332 f1orescnv 5517 resdif 5523 oveq12 5928 cbvmpov 5999 ovmpog 6054 fvmpopr2d 6056 eqopi 6227 fmpoco 6271 nnaordex 6583 map0g 6744 xpcomco 6882 xpmapenlem 6907 phplem3 6912 phplem4 6913 sbthlemi5 7022 addcmpblnq 7429 ltrnqg 7482 enq0ref 7495 addcmpblnq0 7505 distrlem4prl 7646 distrlem4pru 7647 recexgt0sr 7835 axcnre 7943 cnegexlem2 8197 cnegexlem3 8198 recexap 8674 xaddpnf2 9916 xaddmnf2 9918 rexadd 9921 xaddnemnf 9926 xaddnepnf 9927 xposdif 9951 frec2uzrand 10479 seqeq3 10526 seqf1oglem2 10594 seqf1og 10595 shftcan1 10981 remul2 11020 immul2 11027 fprodssdc 11736 ef0lem 11806 efieq1re 11918 dvdsnegb 11954 dvdscmul 11964 dvds2ln 11970 dvds2add 11971 dvds2sub 11972 gcdn0val 12101 rpmulgcd 12166 lcmval 12204 lcmn0val 12207 odzval 12382 pcmpt 12484 grpsubval 13121 mulgnn0gsum 13201 crngpropd 13538 opprringbg 13579 dvdsrtr 13600 isopn3 14304 dvexp 14890 dvexp2 14891 elply2 14914 lgsval3 15175 lgsdinn0 15205 subctctexmid 15561 |
Copyright terms: Public domain | W3C validator |