![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan9eq | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
sylan9eq.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylan9eq.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylan9eq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9eq.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylan9eq.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | eqtr 2211 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2an 289 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: sylan9req 2247 sylan9eqr 2248 difeq12 3272 uneq12 3308 ineq12 3355 ifeq12 3573 preq12 3697 prprc 3728 preq12b 3796 opeq12 3806 xpeq12 4678 nfimad 5014 coi2 5182 funimass1 5331 f1orescnv 5516 resdif 5522 oveq12 5927 cbvmpov 5998 ovmpog 6053 eqopi 6225 fmpoco 6269 nnaordex 6581 map0g 6742 xpcomco 6880 xpmapenlem 6905 phplem3 6910 phplem4 6911 sbthlemi5 7020 addcmpblnq 7427 ltrnqg 7480 enq0ref 7493 addcmpblnq0 7503 distrlem4prl 7644 distrlem4pru 7645 recexgt0sr 7833 axcnre 7941 cnegexlem2 8195 cnegexlem3 8196 recexap 8672 xaddpnf2 9913 xaddmnf2 9915 rexadd 9918 xaddnemnf 9923 xaddnepnf 9924 xposdif 9948 frec2uzrand 10476 seqeq3 10523 seqf1oglem2 10591 seqf1og 10592 shftcan1 10978 remul2 11017 immul2 11024 fprodssdc 11733 ef0lem 11803 efieq1re 11915 dvdsnegb 11951 dvdscmul 11961 dvds2ln 11967 dvds2add 11968 dvds2sub 11969 gcdn0val 12098 rpmulgcd 12163 lcmval 12201 lcmn0val 12204 odzval 12379 pcmpt 12481 grpsubval 13118 mulgnn0gsum 13198 crngpropd 13535 opprringbg 13576 dvdsrtr 13597 isopn3 14293 dvexp 14860 dvexp2 14861 elply2 14881 lgsval3 15134 lgsdinn0 15164 subctctexmid 15491 |
Copyright terms: Public domain | W3C validator |