| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylan9eq | Unicode version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 8-May-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| sylan9eq.1 |
|
| sylan9eq.2 |
|
| Ref | Expression |
|---|---|
| sylan9eq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9eq.1 |
. 2
| |
| 2 | sylan9eq.2 |
. 2
| |
| 3 | eqtr 2223 |
. 2
| |
| 4 | 1, 2, 3 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: sylan9req 2259 sylan9eqr 2260 difeq12 3286 uneq12 3322 ineq12 3369 ifeq12 3587 preq12 3712 prprc 3743 preq12b 3811 opeq12 3821 xpeq12 4694 nfimad 5031 coi2 5199 funimass1 5351 f1orescnv 5538 resdif 5544 oveq12 5953 cbvmpov 6025 ovmpog 6080 fvmpopr2d 6082 eqopi 6258 fmpoco 6302 nnaordex 6614 map0g 6775 xpcomco 6921 xpmapenlem 6946 phplem3 6951 phplem4 6952 sbthlemi5 7063 addcmpblnq 7480 ltrnqg 7533 enq0ref 7546 addcmpblnq0 7556 distrlem4prl 7697 distrlem4pru 7698 recexgt0sr 7886 axcnre 7994 cnegexlem2 8248 cnegexlem3 8249 recexap 8726 xaddpnf2 9969 xaddmnf2 9971 rexadd 9974 xaddnemnf 9979 xaddnepnf 9980 xposdif 10004 frec2uzrand 10550 seqeq3 10597 seqf1oglem2 10665 seqf1og 10666 lsw1 11043 shftcan1 11145 remul2 11184 immul2 11191 fprodssdc 11901 ef0lem 11971 efieq1re 12083 dvdsnegb 12119 dvdscmul 12129 dvds2ln 12135 dvds2add 12136 dvds2sub 12137 gcdn0val 12282 rpmulgcd 12347 lcmval 12385 lcmn0val 12388 odzval 12564 pcmpt 12666 grpsubval 13378 mulgnn0gsum 13464 crngpropd 13801 opprringbg 13842 dvdsrtr 13863 isopn3 14597 dvexp 15183 dvexp2 15184 elply2 15207 lgsval3 15495 lgsdinn0 15525 subctctexmid 15941 |
| Copyright terms: Public domain | W3C validator |