ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq1i Unicode version

Theorem difeq1i 3236
Description: Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
difeq1i.1  |-  A  =  B
Assertion
Ref Expression
difeq1i  |-  ( A 
\  C )  =  ( B  \  C
)

Proof of Theorem difeq1i
StepHypRef Expression
1 difeq1i.1 . 2  |-  A  =  B
2 difeq1 3233 . 2  |-  ( A  =  B  ->  ( A  \  C )  =  ( B  \  C
) )
31, 2ax-mp 5 1  |-  ( A 
\  C )  =  ( B  \  C
)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    \ cdif 3113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-dif 3118
This theorem is referenced by:  difeq12i  3238  indif1  3367  indifcom  3368  difun1  3382  notab  3392  notrab  3399  difprsn1  3712  difprsn2  3713  orddif  4524  resdifcom  4902  resdmdfsn  4927  phplem1  6818  dfn2  9127
  Copyright terms: Public domain W3C validator