| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difeq12 | GIF version | ||
| Description: Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| difeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1 3315 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
| 2 | difeq2 3316 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2282 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∖ cdif 3194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-dif 3199 |
| This theorem is referenced by: resdif 5593 |
| Copyright terms: Public domain | W3C validator |