ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq12 GIF version

Theorem difeq12 3272
Description: Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.)
Assertion
Ref Expression
difeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem difeq12
StepHypRef Expression
1 difeq1 3270 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 difeq2 3271 . 2 (𝐶 = 𝐷 → (𝐵𝐶) = (𝐵𝐷))
31, 2sylan9eq 2246 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  cdif 3150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-dif 3155
This theorem is referenced by:  resdif  5522
  Copyright terms: Public domain W3C validator