![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difeq12 | GIF version |
Description: Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
difeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1 3153 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
2 | difeq2 3154 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷)) | |
3 | 1, 2 | sylan9eq 2167 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∖ cdif 3034 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rab 2399 df-dif 3039 |
This theorem is referenced by: resdif 5345 |
Copyright terms: Public domain | W3C validator |