| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difeq12 | GIF version | ||
| Description: Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| difeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1 3283 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | |
| 2 | difeq2 3284 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2257 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∖ cdif 3162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rab 2492 df-dif 3167 |
| This theorem is referenced by: resdif 5538 |
| Copyright terms: Public domain | W3C validator |