Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resdif | Unicode version |
Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.) |
Ref | Expression |
---|---|
resdif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofun 5411 | . . . . . 6 | |
2 | difss 3248 | . . . . . . 7 | |
3 | fof 5410 | . . . . . . . 8 | |
4 | fdm 5343 | . . . . . . . 8 | |
5 | 3, 4 | syl 14 | . . . . . . 7 |
6 | 2, 5 | sseqtrrid 3193 | . . . . . 6 |
7 | fores 5419 | . . . . . 6 | |
8 | 1, 6, 7 | syl2anc 409 | . . . . 5 |
9 | resres 4896 | . . . . . . . 8 | |
10 | indif 3365 | . . . . . . . . 9 | |
11 | 10 | reseq2i 4881 | . . . . . . . 8 |
12 | 9, 11 | eqtri 2186 | . . . . . . 7 |
13 | foeq1 5406 | . . . . . . 7 | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 |
15 | 12 | rneqi 4832 | . . . . . . . 8 |
16 | df-ima 4617 | . . . . . . . 8 | |
17 | df-ima 4617 | . . . . . . . 8 | |
18 | 15, 16, 17 | 3eqtr4i 2196 | . . . . . . 7 |
19 | foeq3 5408 | . . . . . . 7 | |
20 | 18, 19 | ax-mp 5 | . . . . . 6 |
21 | 14, 20 | bitri 183 | . . . . 5 |
22 | 8, 21 | sylib 121 | . . . 4 |
23 | funres11 5260 | . . . 4 | |
24 | dff1o3 5438 | . . . . 5 | |
25 | 24 | biimpri 132 | . . . 4 |
26 | 22, 23, 25 | syl2anr 288 | . . 3 |
27 | 26 | 3adant3 1007 | . 2 |
28 | df-ima 4617 | . . . . . . 7 | |
29 | forn 5413 | . . . . . . 7 | |
30 | 28, 29 | syl5eq 2211 | . . . . . 6 |
31 | df-ima 4617 | . . . . . . 7 | |
32 | forn 5413 | . . . . . . 7 | |
33 | 31, 32 | syl5eq 2211 | . . . . . 6 |
34 | 30, 33 | anim12i 336 | . . . . 5 |
35 | imadif 5268 | . . . . . 6 | |
36 | difeq12 3235 | . . . . . 6 | |
37 | 35, 36 | sylan9eq 2219 | . . . . 5 |
38 | 34, 37 | sylan2 284 | . . . 4 |
39 | 38 | 3impb 1189 | . . 3 |
40 | f1oeq3 5423 | . . 3 | |
41 | 39, 40 | syl 14 | . 2 |
42 | 27, 41 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 cdif 3113 cin 3115 wss 3116 ccnv 4603 cdm 4604 crn 4605 cres 4606 cima 4607 wfun 5182 wf 5184 wfo 5186 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: dif1en 6845 |
Copyright terms: Public domain | W3C validator |