Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resdif | Unicode version |
Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.) |
Ref | Expression |
---|---|
resdif |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofun 5421 | . . . . . 6 | |
2 | difss 3253 | . . . . . . 7 | |
3 | fof 5420 | . . . . . . . 8 | |
4 | fdm 5353 | . . . . . . . 8 | |
5 | 3, 4 | syl 14 | . . . . . . 7 |
6 | 2, 5 | sseqtrrid 3198 | . . . . . 6 |
7 | fores 5429 | . . . . . 6 | |
8 | 1, 6, 7 | syl2anc 409 | . . . . 5 |
9 | resres 4903 | . . . . . . . 8 | |
10 | indif 3370 | . . . . . . . . 9 | |
11 | 10 | reseq2i 4888 | . . . . . . . 8 |
12 | 9, 11 | eqtri 2191 | . . . . . . 7 |
13 | foeq1 5416 | . . . . . . 7 | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 |
15 | 12 | rneqi 4839 | . . . . . . . 8 |
16 | df-ima 4624 | . . . . . . . 8 | |
17 | df-ima 4624 | . . . . . . . 8 | |
18 | 15, 16, 17 | 3eqtr4i 2201 | . . . . . . 7 |
19 | foeq3 5418 | . . . . . . 7 | |
20 | 18, 19 | ax-mp 5 | . . . . . 6 |
21 | 14, 20 | bitri 183 | . . . . 5 |
22 | 8, 21 | sylib 121 | . . . 4 |
23 | funres11 5270 | . . . 4 | |
24 | dff1o3 5448 | . . . . 5 | |
25 | 24 | biimpri 132 | . . . 4 |
26 | 22, 23, 25 | syl2anr 288 | . . 3 |
27 | 26 | 3adant3 1012 | . 2 |
28 | df-ima 4624 | . . . . . . 7 | |
29 | forn 5423 | . . . . . . 7 | |
30 | 28, 29 | eqtrid 2215 | . . . . . 6 |
31 | df-ima 4624 | . . . . . . 7 | |
32 | forn 5423 | . . . . . . 7 | |
33 | 31, 32 | eqtrid 2215 | . . . . . 6 |
34 | 30, 33 | anim12i 336 | . . . . 5 |
35 | imadif 5278 | . . . . . 6 | |
36 | difeq12 3240 | . . . . . 6 | |
37 | 35, 36 | sylan9eq 2223 | . . . . 5 |
38 | 34, 37 | sylan2 284 | . . . 4 |
39 | 38 | 3impb 1194 | . . 3 |
40 | f1oeq3 5433 | . . 3 | |
41 | 39, 40 | syl 14 | . 2 |
42 | 27, 41 | mpbid 146 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 cdif 3118 cin 3120 wss 3121 ccnv 4610 cdm 4611 crn 4612 cres 4613 cima 4614 wfun 5192 wf 5194 wfo 5196 wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: dif1en 6857 |
Copyright terms: Public domain | W3C validator |