ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdif Unicode version

Theorem resdif 5345
Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
resdif  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -1-1-onto-> ( C 
\  D ) )

Proof of Theorem resdif
StepHypRef Expression
1 fofun 5304 . . . . . 6  |-  ( ( F  |`  A ) : A -onto-> C  ->  Fun  ( F  |`  A ) )
2 difss 3168 . . . . . . 7  |-  ( A 
\  B )  C_  A
3 fof 5303 . . . . . . . 8  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( F  |`  A ) : A --> C )
4 fdm 5236 . . . . . . . 8  |-  ( ( F  |`  A ) : A --> C  ->  dom  ( F  |`  A )  =  A )
53, 4syl 14 . . . . . . 7  |-  ( ( F  |`  A ) : A -onto-> C  ->  dom  ( F  |`  A )  =  A )
62, 5sseqtrrid 3114 . . . . . 6  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( A 
\  B )  C_  dom  ( F  |`  A ) )
7 fores 5312 . . . . . 6  |-  ( ( Fun  ( F  |`  A )  /\  ( A  \  B )  C_  dom  ( F  |`  A ) )  ->  ( ( F  |`  A )  |`  ( A  \  B ) ) : ( A 
\  B ) -onto-> ( ( F  |`  A )
" ( A  \  B ) ) )
81, 6, 7syl2anc 406 . . . . 5  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( ( F  |`  A )  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) ) )
9 resres 4789 . . . . . . . 8  |-  ( ( F  |`  A )  |`  ( A  \  B
) )  =  ( F  |`  ( A  i^i  ( A  \  B
) ) )
10 indif 3285 . . . . . . . . 9  |-  ( A  i^i  ( A  \  B ) )  =  ( A  \  B
)
1110reseq2i 4774 . . . . . . . 8  |-  ( F  |`  ( A  i^i  ( A  \  B ) ) )  =  ( F  |`  ( A  \  B
) )
129, 11eqtri 2135 . . . . . . 7  |-  ( ( F  |`  A )  |`  ( A  \  B
) )  =  ( F  |`  ( A  \  B ) )
13 foeq1 5299 . . . . . . 7  |-  ( ( ( F  |`  A )  |`  ( A  \  B
) )  =  ( F  |`  ( A  \  B ) )  -> 
( ( ( F  |`  A )  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( ( F  |`  A ) " ( A  \  B ) )  <->  ( F  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) ) ) )
1412, 13ax-mp 7 . . . . . 6  |-  ( ( ( F  |`  A )  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( ( F  |`  A ) " ( A  \  B ) ) )
1512rneqi 4727 . . . . . . . 8  |-  ran  (
( F  |`  A )  |`  ( A  \  B
) )  =  ran  ( F  |`  ( A 
\  B ) )
16 df-ima 4512 . . . . . . . 8  |-  ( ( F  |`  A ) " ( A  \  B ) )  =  ran  ( ( F  |`  A )  |`  ( A  \  B ) )
17 df-ima 4512 . . . . . . . 8  |-  ( F
" ( A  \  B ) )  =  ran  ( F  |`  ( A  \  B ) )
1815, 16, 173eqtr4i 2145 . . . . . . 7  |-  ( ( F  |`  A ) " ( A  \  B ) )  =  ( F " ( A  \  B ) )
19 foeq3 5301 . . . . . . 7  |-  ( ( ( F  |`  A )
" ( A  \  B ) )  =  ( F " ( A  \  B ) )  ->  ( ( F  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( F
" ( A  \  B ) ) ) )
2018, 19ax-mp 7 . . . . . 6  |-  ( ( F  |`  ( A  \  B ) ) : ( A  \  B
) -onto-> ( ( F  |`  A ) " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( F
" ( A  \  B ) ) )
2114, 20bitri 183 . . . . 5  |-  ( ( ( F  |`  A )  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( F
" ( A  \  B ) ) )
228, 21sylib 121 . . . 4  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( F  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( F " ( A  \  B ) ) )
23 funres11 5153 . . . 4  |-  ( Fun  `' F  ->  Fun  `' ( F  |`  ( A 
\  B ) ) )
24 dff1o3 5329 . . . . 5  |-  ( ( F  |`  ( A  \  B ) ) : ( A  \  B
)
-1-1-onto-> ( F " ( A 
\  B ) )  <-> 
( ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -onto-> ( F " ( A 
\  B ) )  /\  Fun  `' ( F  |`  ( A  \  B ) ) ) )
2524biimpri 132 . . . 4  |-  ( ( ( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( F
" ( A  \  B ) )  /\  Fun  `' ( F  |`  ( A  \  B ) ) )  ->  ( F  |`  ( A  \  B ) ) : ( A  \  B
)
-1-1-onto-> ( F " ( A 
\  B ) ) )
2622, 23, 25syl2anr 286 . . 3  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -1-1-onto-> ( F
" ( A  \  B ) ) )
27263adant3 984 . 2  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -1-1-onto-> ( F
" ( A  \  B ) ) )
28 df-ima 4512 . . . . . . 7  |-  ( F
" A )  =  ran  ( F  |`  A )
29 forn 5306 . . . . . . 7  |-  ( ( F  |`  A ) : A -onto-> C  ->  ran  ( F  |`  A )  =  C )
3028, 29syl5eq 2159 . . . . . 6  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( F
" A )  =  C )
31 df-ima 4512 . . . . . . 7  |-  ( F
" B )  =  ran  ( F  |`  B )
32 forn 5306 . . . . . . 7  |-  ( ( F  |`  B ) : B -onto-> D  ->  ran  ( F  |`  B )  =  D )
3331, 32syl5eq 2159 . . . . . 6  |-  ( ( F  |`  B ) : B -onto-> D  ->  ( F
" B )  =  D )
3430, 33anim12i 334 . . . . 5  |-  ( ( ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( ( F
" A )  =  C  /\  ( F
" B )  =  D ) )
35 imadif 5161 . . . . . 6  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )
36 difeq12 3155 . . . . . 6  |-  ( ( ( F " A
)  =  C  /\  ( F " B )  =  D )  -> 
( ( F " A )  \  ( F " B ) )  =  ( C  \  D ) )
3735, 36sylan9eq 2167 . . . . 5  |-  ( ( Fun  `' F  /\  ( ( F " A )  =  C  /\  ( F " B )  =  D ) )  ->  ( F " ( A  \  B ) )  =  ( C  \  D
) )
3834, 37sylan2 282 . . . 4  |-  ( ( Fun  `' F  /\  ( ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D ) )  -> 
( F " ( A  \  B ) )  =  ( C  \  D ) )
39383impb 1160 . . 3  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F "
( A  \  B
) )  =  ( C  \  D ) )
40 f1oeq3 5316 . . 3  |-  ( ( F " ( A 
\  B ) )  =  ( C  \  D )  ->  (
( F  |`  ( A  \  B ) ) : ( A  \  B ) -1-1-onto-> ( F " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -1-1-onto-> ( C  \  D
) ) )
4139, 40syl 14 . 2  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( ( F  |`  ( A  \  B
) ) : ( A  \  B ) -1-1-onto-> ( F " ( A 
\  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -1-1-onto-> ( C  \  D
) ) )
4227, 41mpbid 146 1  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -1-1-onto-> ( C 
\  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    = wceq 1314    \ cdif 3034    i^i cin 3036    C_ wss 3037   `'ccnv 4498   dom cdm 4499   ran crn 4500    |` cres 4501   "cima 4502   Fun wfun 5075   -->wf 5077   -onto->wfo 5079   -1-1-onto->wf1o 5080
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088
This theorem is referenced by:  dif1en  6726
  Copyright terms: Public domain W3C validator