| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resdif | Unicode version | ||
| Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.) |
| Ref | Expression |
|---|---|
| resdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofun 5484 |
. . . . . 6
| |
| 2 | difss 3290 |
. . . . . . 7
| |
| 3 | fof 5483 |
. . . . . . . 8
| |
| 4 | fdm 5416 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl 14 |
. . . . . . 7
|
| 6 | 2, 5 | sseqtrrid 3235 |
. . . . . 6
|
| 7 | fores 5493 |
. . . . . 6
| |
| 8 | 1, 6, 7 | syl2anc 411 |
. . . . 5
|
| 9 | resres 4959 |
. . . . . . . 8
| |
| 10 | indif 3407 |
. . . . . . . . 9
| |
| 11 | 10 | reseq2i 4944 |
. . . . . . . 8
|
| 12 | 9, 11 | eqtri 2217 |
. . . . . . 7
|
| 13 | foeq1 5479 |
. . . . . . 7
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . 6
|
| 15 | 12 | rneqi 4895 |
. . . . . . . 8
|
| 16 | df-ima 4677 |
. . . . . . . 8
| |
| 17 | df-ima 4677 |
. . . . . . . 8
| |
| 18 | 15, 16, 17 | 3eqtr4i 2227 |
. . . . . . 7
|
| 19 | foeq3 5481 |
. . . . . . 7
| |
| 20 | 18, 19 | ax-mp 5 |
. . . . . 6
|
| 21 | 14, 20 | bitri 184 |
. . . . 5
|
| 22 | 8, 21 | sylib 122 |
. . . 4
|
| 23 | funres11 5331 |
. . . 4
| |
| 24 | dff1o3 5513 |
. . . . 5
| |
| 25 | 24 | biimpri 133 |
. . . 4
|
| 26 | 22, 23, 25 | syl2anr 290 |
. . 3
|
| 27 | 26 | 3adant3 1019 |
. 2
|
| 28 | df-ima 4677 |
. . . . . . 7
| |
| 29 | forn 5486 |
. . . . . . 7
| |
| 30 | 28, 29 | eqtrid 2241 |
. . . . . 6
|
| 31 | df-ima 4677 |
. . . . . . 7
| |
| 32 | forn 5486 |
. . . . . . 7
| |
| 33 | 31, 32 | eqtrid 2241 |
. . . . . 6
|
| 34 | 30, 33 | anim12i 338 |
. . . . 5
|
| 35 | imadif 5339 |
. . . . . 6
| |
| 36 | difeq12 3277 |
. . . . . 6
| |
| 37 | 35, 36 | sylan9eq 2249 |
. . . . 5
|
| 38 | 34, 37 | sylan2 286 |
. . . 4
|
| 39 | 38 | 3impb 1201 |
. . 3
|
| 40 | f1oeq3 5497 |
. . 3
| |
| 41 | 39, 40 | syl 14 |
. 2
|
| 42 | 27, 41 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: dif1en 6949 |
| Copyright terms: Public domain | W3C validator |