ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdif Unicode version

Theorem resdif 5522
Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
resdif  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -1-1-onto-> ( C 
\  D ) )

Proof of Theorem resdif
StepHypRef Expression
1 fofun 5477 . . . . . 6  |-  ( ( F  |`  A ) : A -onto-> C  ->  Fun  ( F  |`  A ) )
2 difss 3285 . . . . . . 7  |-  ( A 
\  B )  C_  A
3 fof 5476 . . . . . . . 8  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( F  |`  A ) : A --> C )
4 fdm 5409 . . . . . . . 8  |-  ( ( F  |`  A ) : A --> C  ->  dom  ( F  |`  A )  =  A )
53, 4syl 14 . . . . . . 7  |-  ( ( F  |`  A ) : A -onto-> C  ->  dom  ( F  |`  A )  =  A )
62, 5sseqtrrid 3230 . . . . . 6  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( A 
\  B )  C_  dom  ( F  |`  A ) )
7 fores 5486 . . . . . 6  |-  ( ( Fun  ( F  |`  A )  /\  ( A  \  B )  C_  dom  ( F  |`  A ) )  ->  ( ( F  |`  A )  |`  ( A  \  B ) ) : ( A 
\  B ) -onto-> ( ( F  |`  A )
" ( A  \  B ) ) )
81, 6, 7syl2anc 411 . . . . 5  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( ( F  |`  A )  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) ) )
9 resres 4954 . . . . . . . 8  |-  ( ( F  |`  A )  |`  ( A  \  B
) )  =  ( F  |`  ( A  i^i  ( A  \  B
) ) )
10 indif 3402 . . . . . . . . 9  |-  ( A  i^i  ( A  \  B ) )  =  ( A  \  B
)
1110reseq2i 4939 . . . . . . . 8  |-  ( F  |`  ( A  i^i  ( A  \  B ) ) )  =  ( F  |`  ( A  \  B
) )
129, 11eqtri 2214 . . . . . . 7  |-  ( ( F  |`  A )  |`  ( A  \  B
) )  =  ( F  |`  ( A  \  B ) )
13 foeq1 5472 . . . . . . 7  |-  ( ( ( F  |`  A )  |`  ( A  \  B
) )  =  ( F  |`  ( A  \  B ) )  -> 
( ( ( F  |`  A )  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( ( F  |`  A ) " ( A  \  B ) )  <->  ( F  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) ) ) )
1412, 13ax-mp 5 . . . . . 6  |-  ( ( ( F  |`  A )  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( ( F  |`  A ) " ( A  \  B ) ) )
1512rneqi 4890 . . . . . . . 8  |-  ran  (
( F  |`  A )  |`  ( A  \  B
) )  =  ran  ( F  |`  ( A 
\  B ) )
16 df-ima 4672 . . . . . . . 8  |-  ( ( F  |`  A ) " ( A  \  B ) )  =  ran  ( ( F  |`  A )  |`  ( A  \  B ) )
17 df-ima 4672 . . . . . . . 8  |-  ( F
" ( A  \  B ) )  =  ran  ( F  |`  ( A  \  B ) )
1815, 16, 173eqtr4i 2224 . . . . . . 7  |-  ( ( F  |`  A ) " ( A  \  B ) )  =  ( F " ( A  \  B ) )
19 foeq3 5474 . . . . . . 7  |-  ( ( ( F  |`  A )
" ( A  \  B ) )  =  ( F " ( A  \  B ) )  ->  ( ( F  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( F
" ( A  \  B ) ) ) )
2018, 19ax-mp 5 . . . . . 6  |-  ( ( F  |`  ( A  \  B ) ) : ( A  \  B
) -onto-> ( ( F  |`  A ) " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( F
" ( A  \  B ) ) )
2114, 20bitri 184 . . . . 5  |-  ( ( ( F  |`  A )  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( ( F  |`  A ) " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( F
" ( A  \  B ) ) )
228, 21sylib 122 . . . 4  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( F  |`  ( A  \  B
) ) : ( A  \  B )
-onto-> ( F " ( A  \  B ) ) )
23 funres11 5326 . . . 4  |-  ( Fun  `' F  ->  Fun  `' ( F  |`  ( A 
\  B ) ) )
24 dff1o3 5506 . . . . 5  |-  ( ( F  |`  ( A  \  B ) ) : ( A  \  B
)
-1-1-onto-> ( F " ( A 
\  B ) )  <-> 
( ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -onto-> ( F " ( A 
\  B ) )  /\  Fun  `' ( F  |`  ( A  \  B ) ) ) )
2524biimpri 133 . . . 4  |-  ( ( ( F  |`  ( A  \  B ) ) : ( A  \  B ) -onto-> ( F
" ( A  \  B ) )  /\  Fun  `' ( F  |`  ( A  \  B ) ) )  ->  ( F  |`  ( A  \  B ) ) : ( A  \  B
)
-1-1-onto-> ( F " ( A 
\  B ) ) )
2622, 23, 25syl2anr 290 . . 3  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -1-1-onto-> ( F
" ( A  \  B ) ) )
27263adant3 1019 . 2  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -1-1-onto-> ( F
" ( A  \  B ) ) )
28 df-ima 4672 . . . . . . 7  |-  ( F
" A )  =  ran  ( F  |`  A )
29 forn 5479 . . . . . . 7  |-  ( ( F  |`  A ) : A -onto-> C  ->  ran  ( F  |`  A )  =  C )
3028, 29eqtrid 2238 . . . . . 6  |-  ( ( F  |`  A ) : A -onto-> C  ->  ( F
" A )  =  C )
31 df-ima 4672 . . . . . . 7  |-  ( F
" B )  =  ran  ( F  |`  B )
32 forn 5479 . . . . . . 7  |-  ( ( F  |`  B ) : B -onto-> D  ->  ran  ( F  |`  B )  =  D )
3331, 32eqtrid 2238 . . . . . 6  |-  ( ( F  |`  B ) : B -onto-> D  ->  ( F
" B )  =  D )
3430, 33anim12i 338 . . . . 5  |-  ( ( ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( ( F
" A )  =  C  /\  ( F
" B )  =  D ) )
35 imadif 5334 . . . . . 6  |-  ( Fun  `' F  ->  ( F
" ( A  \  B ) )  =  ( ( F " A )  \  ( F " B ) ) )
36 difeq12 3272 . . . . . 6  |-  ( ( ( F " A
)  =  C  /\  ( F " B )  =  D )  -> 
( ( F " A )  \  ( F " B ) )  =  ( C  \  D ) )
3735, 36sylan9eq 2246 . . . . 5  |-  ( ( Fun  `' F  /\  ( ( F " A )  =  C  /\  ( F " B )  =  D ) )  ->  ( F " ( A  \  B ) )  =  ( C  \  D
) )
3834, 37sylan2 286 . . . 4  |-  ( ( Fun  `' F  /\  ( ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D ) )  -> 
( F " ( A  \  B ) )  =  ( C  \  D ) )
39383impb 1201 . . 3  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F "
( A  \  B
) )  =  ( C  \  D ) )
40 f1oeq3 5490 . . 3  |-  ( ( F " ( A 
\  B ) )  =  ( C  \  D )  ->  (
( F  |`  ( A  \  B ) ) : ( A  \  B ) -1-1-onto-> ( F " ( A  \  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -1-1-onto-> ( C  \  D
) ) )
4139, 40syl 14 . 2  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( ( F  |`  ( A  \  B
) ) : ( A  \  B ) -1-1-onto-> ( F " ( A 
\  B ) )  <-> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) -1-1-onto-> ( C  \  D
) ) )
4227, 41mpbid 147 1  |-  ( ( Fun  `' F  /\  ( F  |`  A ) : A -onto-> C  /\  ( F  |`  B ) : B -onto-> D )  ->  ( F  |`  ( A  \  B ) ) : ( A 
\  B ) -1-1-onto-> ( C 
\  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    \ cdif 3150    i^i cin 3152    C_ wss 3153   `'ccnv 4658   dom cdm 4659   ran crn 4660    |` cres 4661   "cima 4662   Fun wfun 5248   -->wf 5250   -onto->wfo 5252   -1-1-onto->wf1o 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261
This theorem is referenced by:  dif1en  6935
  Copyright terms: Public domain W3C validator