| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resdif | Unicode version | ||
| Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.) |
| Ref | Expression |
|---|---|
| resdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofun 5548 |
. . . . . 6
| |
| 2 | difss 3330 |
. . . . . . 7
| |
| 3 | fof 5547 |
. . . . . . . 8
| |
| 4 | fdm 5478 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl 14 |
. . . . . . 7
|
| 6 | 2, 5 | sseqtrrid 3275 |
. . . . . 6
|
| 7 | fores 5557 |
. . . . . 6
| |
| 8 | 1, 6, 7 | syl2anc 411 |
. . . . 5
|
| 9 | resres 5016 |
. . . . . . . 8
| |
| 10 | indif 3447 |
. . . . . . . . 9
| |
| 11 | 10 | reseq2i 5001 |
. . . . . . . 8
|
| 12 | 9, 11 | eqtri 2250 |
. . . . . . 7
|
| 13 | foeq1 5543 |
. . . . . . 7
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . 6
|
| 15 | 12 | rneqi 4951 |
. . . . . . . 8
|
| 16 | df-ima 4731 |
. . . . . . . 8
| |
| 17 | df-ima 4731 |
. . . . . . . 8
| |
| 18 | 15, 16, 17 | 3eqtr4i 2260 |
. . . . . . 7
|
| 19 | foeq3 5545 |
. . . . . . 7
| |
| 20 | 18, 19 | ax-mp 5 |
. . . . . 6
|
| 21 | 14, 20 | bitri 184 |
. . . . 5
|
| 22 | 8, 21 | sylib 122 |
. . . 4
|
| 23 | funres11 5392 |
. . . 4
| |
| 24 | dff1o3 5577 |
. . . . 5
| |
| 25 | 24 | biimpri 133 |
. . . 4
|
| 26 | 22, 23, 25 | syl2anr 290 |
. . 3
|
| 27 | 26 | 3adant3 1041 |
. 2
|
| 28 | df-ima 4731 |
. . . . . . 7
| |
| 29 | forn 5550 |
. . . . . . 7
| |
| 30 | 28, 29 | eqtrid 2274 |
. . . . . 6
|
| 31 | df-ima 4731 |
. . . . . . 7
| |
| 32 | forn 5550 |
. . . . . . 7
| |
| 33 | 31, 32 | eqtrid 2274 |
. . . . . 6
|
| 34 | 30, 33 | anim12i 338 |
. . . . 5
|
| 35 | imadif 5400 |
. . . . . 6
| |
| 36 | difeq12 3317 |
. . . . . 6
| |
| 37 | 35, 36 | sylan9eq 2282 |
. . . . 5
|
| 38 | 34, 37 | sylan2 286 |
. . . 4
|
| 39 | 38 | 3impb 1223 |
. . 3
|
| 40 | f1oeq3 5561 |
. . 3
| |
| 41 | 39, 40 | syl 14 |
. 2
|
| 42 | 27, 41 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 |
| This theorem is referenced by: dif1en 7037 |
| Copyright terms: Public domain | W3C validator |