| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > resdif | Unicode version | ||
| Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.) | 
| Ref | Expression | 
|---|---|
| resdif | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fofun 5481 | 
. . . . . 6
 | |
| 2 | difss 3289 | 
. . . . . . 7
 | |
| 3 | fof 5480 | 
. . . . . . . 8
 | |
| 4 | fdm 5413 | 
. . . . . . . 8
 | |
| 5 | 3, 4 | syl 14 | 
. . . . . . 7
 | 
| 6 | 2, 5 | sseqtrrid 3234 | 
. . . . . 6
 | 
| 7 | fores 5490 | 
. . . . . 6
 | |
| 8 | 1, 6, 7 | syl2anc 411 | 
. . . . 5
 | 
| 9 | resres 4958 | 
. . . . . . . 8
 | |
| 10 | indif 3406 | 
. . . . . . . . 9
 | |
| 11 | 10 | reseq2i 4943 | 
. . . . . . . 8
 | 
| 12 | 9, 11 | eqtri 2217 | 
. . . . . . 7
 | 
| 13 | foeq1 5476 | 
. . . . . . 7
 | |
| 14 | 12, 13 | ax-mp 5 | 
. . . . . 6
 | 
| 15 | 12 | rneqi 4894 | 
. . . . . . . 8
 | 
| 16 | df-ima 4676 | 
. . . . . . . 8
 | |
| 17 | df-ima 4676 | 
. . . . . . . 8
 | |
| 18 | 15, 16, 17 | 3eqtr4i 2227 | 
. . . . . . 7
 | 
| 19 | foeq3 5478 | 
. . . . . . 7
 | |
| 20 | 18, 19 | ax-mp 5 | 
. . . . . 6
 | 
| 21 | 14, 20 | bitri 184 | 
. . . . 5
 | 
| 22 | 8, 21 | sylib 122 | 
. . . 4
 | 
| 23 | funres11 5330 | 
. . . 4
 | |
| 24 | dff1o3 5510 | 
. . . . 5
 | |
| 25 | 24 | biimpri 133 | 
. . . 4
 | 
| 26 | 22, 23, 25 | syl2anr 290 | 
. . 3
 | 
| 27 | 26 | 3adant3 1019 | 
. 2
 | 
| 28 | df-ima 4676 | 
. . . . . . 7
 | |
| 29 | forn 5483 | 
. . . . . . 7
 | |
| 30 | 28, 29 | eqtrid 2241 | 
. . . . . 6
 | 
| 31 | df-ima 4676 | 
. . . . . . 7
 | |
| 32 | forn 5483 | 
. . . . . . 7
 | |
| 33 | 31, 32 | eqtrid 2241 | 
. . . . . 6
 | 
| 34 | 30, 33 | anim12i 338 | 
. . . . 5
 | 
| 35 | imadif 5338 | 
. . . . . 6
 | |
| 36 | difeq12 3276 | 
. . . . . 6
 | |
| 37 | 35, 36 | sylan9eq 2249 | 
. . . . 5
 | 
| 38 | 34, 37 | sylan2 286 | 
. . . 4
 | 
| 39 | 38 | 3impb 1201 | 
. . 3
 | 
| 40 | f1oeq3 5494 | 
. . 3
 | |
| 41 | 39, 40 | syl 14 | 
. 2
 | 
| 42 | 27, 41 | mpbid 147 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 | 
| This theorem is referenced by: dif1en 6940 | 
| Copyright terms: Public domain | W3C validator |