| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resdif | Unicode version | ||
| Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.) |
| Ref | Expression |
|---|---|
| resdif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofun 5499 |
. . . . . 6
| |
| 2 | difss 3299 |
. . . . . . 7
| |
| 3 | fof 5498 |
. . . . . . . 8
| |
| 4 | fdm 5431 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl 14 |
. . . . . . 7
|
| 6 | 2, 5 | sseqtrrid 3244 |
. . . . . 6
|
| 7 | fores 5508 |
. . . . . 6
| |
| 8 | 1, 6, 7 | syl2anc 411 |
. . . . 5
|
| 9 | resres 4971 |
. . . . . . . 8
| |
| 10 | indif 3416 |
. . . . . . . . 9
| |
| 11 | 10 | reseq2i 4956 |
. . . . . . . 8
|
| 12 | 9, 11 | eqtri 2226 |
. . . . . . 7
|
| 13 | foeq1 5494 |
. . . . . . 7
| |
| 14 | 12, 13 | ax-mp 5 |
. . . . . 6
|
| 15 | 12 | rneqi 4906 |
. . . . . . . 8
|
| 16 | df-ima 4688 |
. . . . . . . 8
| |
| 17 | df-ima 4688 |
. . . . . . . 8
| |
| 18 | 15, 16, 17 | 3eqtr4i 2236 |
. . . . . . 7
|
| 19 | foeq3 5496 |
. . . . . . 7
| |
| 20 | 18, 19 | ax-mp 5 |
. . . . . 6
|
| 21 | 14, 20 | bitri 184 |
. . . . 5
|
| 22 | 8, 21 | sylib 122 |
. . . 4
|
| 23 | funres11 5346 |
. . . 4
| |
| 24 | dff1o3 5528 |
. . . . 5
| |
| 25 | 24 | biimpri 133 |
. . . 4
|
| 26 | 22, 23, 25 | syl2anr 290 |
. . 3
|
| 27 | 26 | 3adant3 1020 |
. 2
|
| 28 | df-ima 4688 |
. . . . . . 7
| |
| 29 | forn 5501 |
. . . . . . 7
| |
| 30 | 28, 29 | eqtrid 2250 |
. . . . . 6
|
| 31 | df-ima 4688 |
. . . . . . 7
| |
| 32 | forn 5501 |
. . . . . . 7
| |
| 33 | 31, 32 | eqtrid 2250 |
. . . . . 6
|
| 34 | 30, 33 | anim12i 338 |
. . . . 5
|
| 35 | imadif 5354 |
. . . . . 6
| |
| 36 | difeq12 3286 |
. . . . . 6
| |
| 37 | 35, 36 | sylan9eq 2258 |
. . . . 5
|
| 38 | 34, 37 | sylan2 286 |
. . . 4
|
| 39 | 38 | 3impb 1202 |
. . 3
|
| 40 | f1oeq3 5512 |
. . 3
| |
| 41 | 39, 40 | syl 14 |
. 2
|
| 42 | 27, 41 | mpbid 147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 |
| This theorem is referenced by: dif1en 6976 |
| Copyright terms: Public domain | W3C validator |