![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difrab0eqim | GIF version |
Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Jim Kingdon, 3-Aug-2018.) |
Ref | Expression |
---|---|
difrab0eqim | ⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑} → (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrabeq 3130 | . 2 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) | |
2 | ssdif0im 3374 | . 2 ⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} → (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅) | |
3 | 1, 2 | sylbir 134 | 1 ⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑} → (𝑉 ∖ {𝑥 ∈ 𝑉 ∣ 𝜑}) = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 {crab 2379 ∖ cdif 3018 ⊆ wss 3021 ∅c0 3310 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-rab 2384 df-v 2643 df-dif 3023 df-in 3027 df-ss 3034 df-nul 3311 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |