ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difrab0eqim GIF version

Theorem difrab0eqim 3513
Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Jim Kingdon, 3-Aug-2018.)
Assertion
Ref Expression
difrab0eqim (𝑉 = {𝑥𝑉𝜑} → (𝑉 ∖ {𝑥𝑉𝜑}) = ∅)
Distinct variable group:   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem difrab0eqim
StepHypRef Expression
1 ssrabeq 3266 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
2 ssdif0im 3511 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} → (𝑉 ∖ {𝑥𝑉𝜑}) = ∅)
31, 2sylbir 135 1 (𝑉 = {𝑥𝑉𝜑} → (𝑉 ∖ {𝑥𝑉𝜑}) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {crab 2476  cdif 3150  wss 3153  c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator