ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difrab0eqim GIF version

Theorem difrab0eqim 3456
Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Jim Kingdon, 3-Aug-2018.)
Assertion
Ref Expression
difrab0eqim (𝑉 = {𝑥𝑉𝜑} → (𝑉 ∖ {𝑥𝑉𝜑}) = ∅)
Distinct variable group:   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem difrab0eqim
StepHypRef Expression
1 ssrabeq 3210 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
2 ssdif0im 3454 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} → (𝑉 ∖ {𝑥𝑉𝜑}) = ∅)
31, 2sylbir 134 1 (𝑉 = {𝑥𝑉𝜑} → (𝑉 ∖ {𝑥𝑉𝜑}) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  {crab 2436  cdif 3095  wss 3098  c0 3390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-rab 2441  df-v 2711  df-dif 3100  df-in 3104  df-ss 3111  df-nul 3391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator