Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssrabeq | Unicode version |
Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
Ref | Expression |
---|---|
ssrabeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3226 | . . 3 | |
2 | 1 | biantru 300 | . 2 |
3 | eqss 3156 | . 2 | |
4 | 2, 3 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 crab 2447 wss 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rab 2452 df-in 3121 df-ss 3128 |
This theorem is referenced by: difrab0eqim 3474 |
Copyright terms: Public domain | W3C validator |