ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrabeq Unicode version

Theorem ssrabeq 3288
Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
ssrabeq  |-  ( V 
C_  { x  e.  V  |  ph }  <->  V  =  { x  e.  V  |  ph }
)
Distinct variable group:    x, V
Allowed substitution hint:    ph( x)

Proof of Theorem ssrabeq
StepHypRef Expression
1 ssrab2 3286 . . 3  |-  { x  e.  V  |  ph }  C_  V
21biantru 302 . 2  |-  ( V 
C_  { x  e.  V  |  ph }  <->  ( V  C_  { x  e.  V  |  ph }  /\  { x  e.  V  |  ph }  C_  V
) )
3 eqss 3216 . 2  |-  ( V  =  { x  e.  V  |  ph }  <->  ( V  C_  { x  e.  V  |  ph }  /\  { x  e.  V  |  ph }  C_  V
) )
42, 3bitr4i 187 1  |-  ( V 
C_  { x  e.  V  |  ph }  <->  V  =  { x  e.  V  |  ph }
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   {crab 2490    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-in 3180  df-ss 3187
This theorem is referenced by:  difrab0eqim  3535
  Copyright terms: Public domain W3C validator