ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrabeq Unicode version

Theorem ssrabeq 3234
Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
ssrabeq  |-  ( V 
C_  { x  e.  V  |  ph }  <->  V  =  { x  e.  V  |  ph }
)
Distinct variable group:    x, V
Allowed substitution hint:    ph( x)

Proof of Theorem ssrabeq
StepHypRef Expression
1 ssrab2 3232 . . 3  |-  { x  e.  V  |  ph }  C_  V
21biantru 300 . 2  |-  ( V 
C_  { x  e.  V  |  ph }  <->  ( V  C_  { x  e.  V  |  ph }  /\  { x  e.  V  |  ph }  C_  V
) )
3 eqss 3162 . 2  |-  ( V  =  { x  e.  V  |  ph }  <->  ( V  C_  { x  e.  V  |  ph }  /\  { x  e.  V  |  ph }  C_  V
) )
42, 3bitr4i 186 1  |-  ( V 
C_  { x  e.  V  |  ph }  <->  V  =  { x  e.  V  |  ph }
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348   {crab 2452    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-in 3127  df-ss 3134
This theorem is referenced by:  difrab0eqim  3481
  Copyright terms: Public domain W3C validator