ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdifsn Unicode version

Theorem ssdifsn 3722
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.)
Assertion
Ref Expression
ssdifsn  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  -.  C  e.  A ) )

Proof of Theorem ssdifsn
StepHypRef Expression
1 difss2 3265 . . 3  |-  ( A 
C_  ( B  \  { C } )  ->  A  C_  B )
2 reldisj 3476 . . . 4  |-  ( A 
C_  B  ->  (
( A  i^i  { C } )  =  (/)  <->  A  C_  ( B  \  { C } ) ) )
32bicomd 141 . . 3  |-  ( A 
C_  B  ->  ( A  C_  ( B  \  { C } )  <->  ( A  i^i  { C } )  =  (/) ) )
41, 3biadan2 456 . 2  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  ( A  i^i  { C }
)  =  (/) ) )
5 disjsn 3656 . . 3  |-  ( ( A  i^i  { C } )  =  (/)  <->  -.  C  e.  A )
65anbi2i 457 . 2  |-  ( ( A  C_  B  /\  ( A  i^i  { C } )  =  (/) ) 
<->  ( A  C_  B  /\  -.  C  e.  A
) )
74, 6bitri 184 1  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  -.  C  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148    \ cdif 3128    i^i cin 3130    C_ wss 3131   (/)c0 3424   {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425  df-sn 3600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator