ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdifsn Unicode version

Theorem ssdifsn 3704
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.)
Assertion
Ref Expression
ssdifsn  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  -.  C  e.  A ) )

Proof of Theorem ssdifsn
StepHypRef Expression
1 difss2 3250 . . 3  |-  ( A 
C_  ( B  \  { C } )  ->  A  C_  B )
2 reldisj 3460 . . . 4  |-  ( A 
C_  B  ->  (
( A  i^i  { C } )  =  (/)  <->  A  C_  ( B  \  { C } ) ) )
32bicomd 140 . . 3  |-  ( A 
C_  B  ->  ( A  C_  ( B  \  { C } )  <->  ( A  i^i  { C } )  =  (/) ) )
41, 3biadan2 452 . 2  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  ( A  i^i  { C }
)  =  (/) ) )
5 disjsn 3638 . . 3  |-  ( ( A  i^i  { C } )  =  (/)  <->  -.  C  e.  A )
65anbi2i 453 . 2  |-  ( ( A  C_  B  /\  ( A  i^i  { C } )  =  (/) ) 
<->  ( A  C_  B  /\  -.  C  e.  A
) )
74, 6bitri 183 1  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  -.  C  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136    \ cdif 3113    i^i cin 3115    C_ wss 3116   (/)c0 3409   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator