ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdifsn Unicode version

Theorem ssdifsn 3796
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.)
Assertion
Ref Expression
ssdifsn  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  -.  C  e.  A ) )

Proof of Theorem ssdifsn
StepHypRef Expression
1 difss2 3332 . . 3  |-  ( A 
C_  ( B  \  { C } )  ->  A  C_  B )
2 reldisj 3543 . . . 4  |-  ( A 
C_  B  ->  (
( A  i^i  { C } )  =  (/)  <->  A  C_  ( B  \  { C } ) ) )
32bicomd 141 . . 3  |-  ( A 
C_  B  ->  ( A  C_  ( B  \  { C } )  <->  ( A  i^i  { C } )  =  (/) ) )
41, 3biadan2 456 . 2  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  ( A  i^i  { C }
)  =  (/) ) )
5 disjsn 3728 . . 3  |-  ( ( A  i^i  { C } )  =  (/)  <->  -.  C  e.  A )
65anbi2i 457 . 2  |-  ( ( A  C_  B  /\  ( A  i^i  { C } )  =  (/) ) 
<->  ( A  C_  B  /\  -.  C  e.  A
) )
74, 6bitri 184 1  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  -.  C  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    \ cdif 3194    i^i cin 3196    C_ wss 3197   (/)c0 3491   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator