ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdifsn Unicode version

Theorem ssdifsn 3761
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021.) (Proof shortened by JJ, 31-May-2022.)
Assertion
Ref Expression
ssdifsn  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  -.  C  e.  A ) )

Proof of Theorem ssdifsn
StepHypRef Expression
1 difss2 3301 . . 3  |-  ( A 
C_  ( B  \  { C } )  ->  A  C_  B )
2 reldisj 3512 . . . 4  |-  ( A 
C_  B  ->  (
( A  i^i  { C } )  =  (/)  <->  A  C_  ( B  \  { C } ) ) )
32bicomd 141 . . 3  |-  ( A 
C_  B  ->  ( A  C_  ( B  \  { C } )  <->  ( A  i^i  { C } )  =  (/) ) )
41, 3biadan2 456 . 2  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  ( A  i^i  { C }
)  =  (/) ) )
5 disjsn 3695 . . 3  |-  ( ( A  i^i  { C } )  =  (/)  <->  -.  C  e.  A )
65anbi2i 457 . 2  |-  ( ( A  C_  B  /\  ( A  i^i  { C } )  =  (/) ) 
<->  ( A  C_  B  /\  -.  C  e.  A
) )
74, 6bitri 184 1  |-  ( A 
C_  ( B  \  { C } )  <->  ( A  C_  B  /\  -.  C  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    \ cdif 3163    i^i cin 3165    C_ wss 3166   (/)c0 3460   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461  df-sn 3639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator