Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbthlem1 | Unicode version |
Description: Lemma for isbth 6932. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
sbthlem.1 | |
sbthlem.2 |
Ref | Expression |
---|---|
sbthlem1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissb 3819 | . 2 | |
2 | sbthlem.2 | . . . . 5 | |
3 | 2 | abeq2i 2277 | . . . 4 |
4 | difss2 3250 | . . . . . . 7 | |
5 | ssconb 3255 | . . . . . . . 8 | |
6 | 5 | exbiri 380 | . . . . . . 7 |
7 | 4, 6 | syl5 32 | . . . . . 6 |
8 | 7 | pm2.43d 50 | . . . . 5 |
9 | 8 | imp 123 | . . . 4 |
10 | 3, 9 | sylbi 120 | . . 3 |
11 | elssuni 3817 | . . . . 5 | |
12 | imass2 4980 | . . . . 5 | |
13 | sscon 3256 | . . . . 5 | |
14 | 11, 12, 13 | 3syl 17 | . . . 4 |
15 | imass2 4980 | . . . 4 | |
16 | sscon 3256 | . . . 4 | |
17 | 14, 15, 16 | 3syl 17 | . . 3 |
18 | 10, 17 | sstrd 3152 | . 2 |
19 | 1, 18 | mprgbir 2524 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cab 2151 cvv 2726 cdif 3113 wss 3116 cuni 3789 cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: sbthlem2 6923 sbthlemi3 6924 sbthlemi5 6926 |
Copyright terms: Public domain | W3C validator |