ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlem1 Unicode version

Theorem sbthlem1 6932
Description: Lemma for isbth 6942. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlem1  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlem1
StepHypRef Expression
1 unissb 3824 . 2  |-  ( U. D  C_  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  <->  A. x  e.  D  x  C_  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) )
2 sbthlem.2 . . . . 5  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
32abeq2i 2281 . . . 4  |-  ( x  e.  D  <->  ( x  C_  A  /\  ( g
" ( B  \ 
( f " x
) ) )  C_  ( A  \  x
) ) )
4 difss2 3255 . . . . . . 7  |-  ( ( g " ( B 
\  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  (
g " ( B 
\  ( f "
x ) ) ) 
C_  A )
5 ssconb 3260 . . . . . . . 8  |-  ( ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  A )  -> 
( x  C_  ( A  \  ( g "
( B  \  (
f " x ) ) ) )  <->  ( g " ( B  \ 
( f " x
) ) )  C_  ( A  \  x
) ) )
65exbiri 380 . . . . . . 7  |-  ( x 
C_  A  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  A  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  x  C_  ( A  \  (
g " ( B 
\  ( f "
x ) ) ) ) ) ) )
74, 6syl5 32 . . . . . 6  |-  ( x 
C_  A  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  x  C_  ( A  \  (
g " ( B 
\  ( f "
x ) ) ) ) ) ) )
87pm2.43d 50 . . . . 5  |-  ( x 
C_  A  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  x  C_  ( A  \  (
g " ( B 
\  ( f "
x ) ) ) ) ) )
98imp 123 . . . 4  |-  ( ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) )  ->  x  C_  ( A  \ 
( g " ( B  \  ( f "
x ) ) ) ) )
103, 9sylbi 120 . . 3  |-  ( x  e.  D  ->  x  C_  ( A  \  (
g " ( B 
\  ( f "
x ) ) ) ) )
11 elssuni 3822 . . . . 5  |-  ( x  e.  D  ->  x  C_ 
U. D )
12 imass2 4985 . . . . 5  |-  ( x 
C_  U. D  ->  (
f " x ) 
C_  ( f " U. D ) )
13 sscon 3261 . . . . 5  |-  ( ( f " x ) 
C_  ( f " U. D )  ->  ( B  \  ( f " U. D ) )  C_  ( B  \  (
f " x ) ) )
1411, 12, 133syl 17 . . . 4  |-  ( x  e.  D  ->  ( B  \  ( f " U. D ) )  C_  ( B  \  (
f " x ) ) )
15 imass2 4985 . . . 4  |-  ( ( B  \  ( f
" U. D ) )  C_  ( B  \  ( f " x
) )  ->  (
g " ( B 
\  ( f " U. D ) ) ) 
C_  ( g "
( B  \  (
f " x ) ) ) )
16 sscon 3261 . . . 4  |-  ( ( g " ( B 
\  ( f " U. D ) ) ) 
C_  ( g "
( B  \  (
f " x ) ) )  ->  ( A  \  ( g "
( B  \  (
f " x ) ) ) )  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )
1714, 15, 163syl 17 . . 3  |-  ( x  e.  D  ->  ( A  \  ( g "
( B  \  (
f " x ) ) ) )  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )
1810, 17sstrd 3157 . 2  |-  ( x  e.  D  ->  x  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )
191, 18mprgbir 2528 1  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   _Vcvv 2730    \ cdif 3118    C_ wss 3121   U.cuni 3794   "cima 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-xp 4615  df-cnv 4617  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622
This theorem is referenced by:  sbthlem2  6933  sbthlemi3  6934  sbthlemi5  6936
  Copyright terms: Public domain W3C validator