| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlem1 | Unicode version | ||
| Description: Lemma for isbth 7069. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| Ref | Expression |
|---|---|
| sbthlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissb 3880 |
. 2
| |
| 2 | sbthlem.2 |
. . . . 5
| |
| 3 | 2 | abeq2i 2316 |
. . . 4
|
| 4 | difss2 3301 |
. . . . . . 7
| |
| 5 | ssconb 3306 |
. . . . . . . 8
| |
| 6 | 5 | exbiri 382 |
. . . . . . 7
|
| 7 | 4, 6 | syl5 32 |
. . . . . 6
|
| 8 | 7 | pm2.43d 50 |
. . . . 5
|
| 9 | 8 | imp 124 |
. . . 4
|
| 10 | 3, 9 | sylbi 121 |
. . 3
|
| 11 | elssuni 3878 |
. . . . 5
| |
| 12 | imass2 5058 |
. . . . 5
| |
| 13 | sscon 3307 |
. . . . 5
| |
| 14 | 11, 12, 13 | 3syl 17 |
. . . 4
|
| 15 | imass2 5058 |
. . . 4
| |
| 16 | sscon 3307 |
. . . 4
| |
| 17 | 14, 15, 16 | 3syl 17 |
. . 3
|
| 18 | 10, 17 | sstrd 3203 |
. 2
|
| 19 | 1, 18 | mprgbir 2564 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 |
| This theorem is referenced by: sbthlem2 7060 sbthlemi3 7061 sbthlemi5 7063 |
| Copyright terms: Public domain | W3C validator |