ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlem1 Unicode version

Theorem sbthlem1 6666
Description: Lemma for isbth 6676. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlem1  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlem1
StepHypRef Expression
1 unissb 3683 . 2  |-  ( U. D  C_  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  <->  A. x  e.  D  x  C_  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) )
2 sbthlem.2 . . . . 5  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
32abeq2i 2198 . . . 4  |-  ( x  e.  D  <->  ( x  C_  A  /\  ( g
" ( B  \ 
( f " x
) ) )  C_  ( A  \  x
) ) )
4 difss2 3128 . . . . . . 7  |-  ( ( g " ( B 
\  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  (
g " ( B 
\  ( f "
x ) ) ) 
C_  A )
5 ssconb 3133 . . . . . . . 8  |-  ( ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  A )  -> 
( x  C_  ( A  \  ( g "
( B  \  (
f " x ) ) ) )  <->  ( g " ( B  \ 
( f " x
) ) )  C_  ( A  \  x
) ) )
65exbiri 374 . . . . . . 7  |-  ( x 
C_  A  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  A  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  x  C_  ( A  \  (
g " ( B 
\  ( f "
x ) ) ) ) ) ) )
74, 6syl5 32 . . . . . 6  |-  ( x 
C_  A  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  x  C_  ( A  \  (
g " ( B 
\  ( f "
x ) ) ) ) ) ) )
87pm2.43d 49 . . . . 5  |-  ( x 
C_  A  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  x  C_  ( A  \  (
g " ( B 
\  ( f "
x ) ) ) ) ) )
98imp 122 . . . 4  |-  ( ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) )  ->  x  C_  ( A  \ 
( g " ( B  \  ( f "
x ) ) ) ) )
103, 9sylbi 119 . . 3  |-  ( x  e.  D  ->  x  C_  ( A  \  (
g " ( B 
\  ( f "
x ) ) ) ) )
11 elssuni 3681 . . . . 5  |-  ( x  e.  D  ->  x  C_ 
U. D )
12 imass2 4808 . . . . 5  |-  ( x 
C_  U. D  ->  (
f " x ) 
C_  ( f " U. D ) )
13 sscon 3134 . . . . 5  |-  ( ( f " x ) 
C_  ( f " U. D )  ->  ( B  \  ( f " U. D ) )  C_  ( B  \  (
f " x ) ) )
1411, 12, 133syl 17 . . . 4  |-  ( x  e.  D  ->  ( B  \  ( f " U. D ) )  C_  ( B  \  (
f " x ) ) )
15 imass2 4808 . . . 4  |-  ( ( B  \  ( f
" U. D ) )  C_  ( B  \  ( f " x
) )  ->  (
g " ( B 
\  ( f " U. D ) ) ) 
C_  ( g "
( B  \  (
f " x ) ) ) )
16 sscon 3134 . . . 4  |-  ( ( g " ( B 
\  ( f " U. D ) ) ) 
C_  ( g "
( B  \  (
f " x ) ) )  ->  ( A  \  ( g "
( B  \  (
f " x ) ) ) )  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )
1714, 15, 163syl 17 . . 3  |-  ( x  e.  D  ->  ( A  \  ( g "
( B  \  (
f " x ) ) ) )  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )
1810, 17sstrd 3035 . 2  |-  ( x  e.  D  ->  x  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )
191, 18mprgbir 2433 1  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   {cab 2074   _Vcvv 2619    \ cdif 2996    C_ wss 2999   U.cuni 3653   "cima 4441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-xp 4444  df-cnv 4446  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451
This theorem is referenced by:  sbthlem2  6667  sbthlemi3  6668  sbthlemi5  6670
  Copyright terms: Public domain W3C validator