ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlem1 Unicode version

Theorem sbthlem1 7016
Description: Lemma for isbth 7026. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1  |-  A  e. 
_V
sbthlem.2  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
Assertion
Ref Expression
sbthlem1  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
Distinct variable groups:    x, A    x, B    x, D    x, f    x, g
Allowed substitution hints:    A( f, g)    B( f, g)    D( f, g)

Proof of Theorem sbthlem1
StepHypRef Expression
1 unissb 3865 . 2  |-  ( U. D  C_  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) )  <->  A. x  e.  D  x  C_  ( A  \ 
( g " ( B  \  ( f " U. D ) ) ) ) )
2 sbthlem.2 . . . . 5  |-  D  =  { x  |  ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) ) }
32abeq2i 2304 . . . 4  |-  ( x  e.  D  <->  ( x  C_  A  /\  ( g
" ( B  \ 
( f " x
) ) )  C_  ( A  \  x
) ) )
4 difss2 3287 . . . . . . 7  |-  ( ( g " ( B 
\  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  (
g " ( B 
\  ( f "
x ) ) ) 
C_  A )
5 ssconb 3292 . . . . . . . 8  |-  ( ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  A )  -> 
( x  C_  ( A  \  ( g "
( B  \  (
f " x ) ) ) )  <->  ( g " ( B  \ 
( f " x
) ) )  C_  ( A  \  x
) ) )
65exbiri 382 . . . . . . 7  |-  ( x 
C_  A  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  A  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  x  C_  ( A  \  (
g " ( B 
\  ( f "
x ) ) ) ) ) ) )
74, 6syl5 32 . . . . . 6  |-  ( x 
C_  A  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  x  C_  ( A  \  (
g " ( B 
\  ( f "
x ) ) ) ) ) ) )
87pm2.43d 50 . . . . 5  |-  ( x 
C_  A  ->  (
( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x )  ->  x  C_  ( A  \  (
g " ( B 
\  ( f "
x ) ) ) ) ) )
98imp 124 . . . 4  |-  ( ( x  C_  A  /\  ( g " ( B  \  ( f "
x ) ) ) 
C_  ( A  \  x ) )  ->  x  C_  ( A  \ 
( g " ( B  \  ( f "
x ) ) ) ) )
103, 9sylbi 121 . . 3  |-  ( x  e.  D  ->  x  C_  ( A  \  (
g " ( B 
\  ( f "
x ) ) ) ) )
11 elssuni 3863 . . . . 5  |-  ( x  e.  D  ->  x  C_ 
U. D )
12 imass2 5041 . . . . 5  |-  ( x 
C_  U. D  ->  (
f " x ) 
C_  ( f " U. D ) )
13 sscon 3293 . . . . 5  |-  ( ( f " x ) 
C_  ( f " U. D )  ->  ( B  \  ( f " U. D ) )  C_  ( B  \  (
f " x ) ) )
1411, 12, 133syl 17 . . . 4  |-  ( x  e.  D  ->  ( B  \  ( f " U. D ) )  C_  ( B  \  (
f " x ) ) )
15 imass2 5041 . . . 4  |-  ( ( B  \  ( f
" U. D ) )  C_  ( B  \  ( f " x
) )  ->  (
g " ( B 
\  ( f " U. D ) ) ) 
C_  ( g "
( B  \  (
f " x ) ) ) )
16 sscon 3293 . . . 4  |-  ( ( g " ( B 
\  ( f " U. D ) ) ) 
C_  ( g "
( B  \  (
f " x ) ) )  ->  ( A  \  ( g "
( B  \  (
f " x ) ) ) )  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )
1714, 15, 163syl 17 . . 3  |-  ( x  e.  D  ->  ( A  \  ( g "
( B  \  (
f " x ) ) ) )  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )
1810, 17sstrd 3189 . 2  |-  ( x  e.  D  ->  x  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) ) )
191, 18mprgbir 2552 1  |-  U. D  C_  ( A  \  (
g " ( B 
\  ( f " U. D ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   _Vcvv 2760    \ cdif 3150    C_ wss 3153   U.cuni 3835   "cima 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by:  sbthlem2  7017  sbthlemi3  7018  sbthlemi5  7020
  Copyright terms: Public domain W3C validator