| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbthlem1 | Unicode version | ||
| Description: Lemma for isbth 7134. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| sbthlem.1 |
|
| sbthlem.2 |
|
| Ref | Expression |
|---|---|
| sbthlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissb 3918 |
. 2
| |
| 2 | sbthlem.2 |
. . . . 5
| |
| 3 | 2 | abeq2i 2340 |
. . . 4
|
| 4 | difss2 3332 |
. . . . . . 7
| |
| 5 | ssconb 3337 |
. . . . . . . 8
| |
| 6 | 5 | exbiri 382 |
. . . . . . 7
|
| 7 | 4, 6 | syl5 32 |
. . . . . 6
|
| 8 | 7 | pm2.43d 50 |
. . . . 5
|
| 9 | 8 | imp 124 |
. . . 4
|
| 10 | 3, 9 | sylbi 121 |
. . 3
|
| 11 | elssuni 3916 |
. . . . 5
| |
| 12 | imass2 5104 |
. . . . 5
| |
| 13 | sscon 3338 |
. . . . 5
| |
| 14 | 11, 12, 13 | 3syl 17 |
. . . 4
|
| 15 | imass2 5104 |
. . . 4
| |
| 16 | sscon 3338 |
. . . 4
| |
| 17 | 14, 15, 16 | 3syl 17 |
. . 3
|
| 18 | 10, 17 | sstrd 3234 |
. 2
|
| 19 | 1, 18 | mprgbir 2588 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-cnv 4727 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 |
| This theorem is referenced by: sbthlem2 7125 sbthlemi3 7126 sbthlemi5 7128 |
| Copyright terms: Public domain | W3C validator |