ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difss2 GIF version

Theorem difss2 3168
Description: If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difss2 (𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)

Proof of Theorem difss2
StepHypRef Expression
1 id 19 . 2 (𝐴 ⊆ (𝐵𝐶) → 𝐴 ⊆ (𝐵𝐶))
2 difss 3166 . 2 (𝐵𝐶) ⊆ 𝐵
31, 2syl6ss 3073 1 (𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  cdif 3032  wss 3035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-dif 3037  df-in 3041  df-ss 3048
This theorem is referenced by:  difss2d  3169  ssdifsn  3615  sbthlem1  6795
  Copyright terms: Public domain W3C validator