![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difss2 | GIF version |
Description: If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
difss2 | ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ (𝐵 ∖ 𝐶)) | |
2 | difss 3166 | . 2 ⊢ (𝐵 ∖ 𝐶) ⊆ 𝐵 | |
3 | 1, 2 | syl6ss 3073 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∖ cdif 3032 ⊆ wss 3035 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-dif 3037 df-in 3041 df-ss 3048 |
This theorem is referenced by: difss2d 3169 ssdifsn 3615 sbthlem1 6795 |
Copyright terms: Public domain | W3C validator |