ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjeq12d GIF version

Theorem disjeq12d 4015
Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disjeq1d.1 (𝜑𝐴 = 𝐵)
disjeq12d.1 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
disjeq12d (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem disjeq12d
StepHypRef Expression
1 disjeq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21disjeq1d 4014 . 2 (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐶))
3 disjeq12d.1 . . . 4 (𝜑𝐶 = 𝐷)
43adantr 276 . . 3 ((𝜑𝑥𝐵) → 𝐶 = 𝐷)
54disjeq2dv 4011 . 2 (𝜑 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐵 𝐷))
62, 5bitrd 188 1 (𝜑 → (Disj 𝑥𝐴 𝐶Disj 𝑥𝐵 𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  Disj wdisj 4006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-ral 2477  df-rmo 2480  df-in 3159  df-ss 3166  df-disj 4007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator