| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjeq12d | GIF version | ||
| Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| disjeq12d.1 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| disjeq12d | ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | disjeq1d 4029 | . 2 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐶)) |
| 3 | disjeq12d.1 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) |
| 5 | 4 | disjeq2dv 4026 | . 2 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐵 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷)) |
| 6 | 2, 5 | bitrd 188 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐶 ↔ Disj 𝑥 ∈ 𝐵 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2176 Disj wdisj 4021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-rmo 2492 df-in 3172 df-ss 3179 df-disj 4022 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |