ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjx0 Unicode version

Theorem disjx0 4028
Description: An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjx0  |- Disj  x  e.  (/)  B

Proof of Theorem disjx0
StepHypRef Expression
1 0ss 3485 . 2  |-  (/)  C_  { (/) }
2 disjxsn 4027 . 2  |- Disj  x  e. 
{ (/) } B
3 disjss1 4012 . 2  |-  ( (/)  C_ 
{ (/) }  ->  (Disj  x  e.  { (/) } B  -> Disj  x  e.  (/)  B ) )
41, 2, 3mp2 16 1  |- Disj  x  e.  (/)  B
Colors of variables: wff set class
Syntax hints:    C_ wss 3153   (/)c0 3446   {csn 3618  Disj wdisj 4006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rmo 2480  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-disj 4007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator