![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp2 | Unicode version |
Description: A double modus ponens inference. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
mp2.1 |
![]() ![]() |
mp2.2 |
![]() ![]() |
mp2.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mp2 |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2.1 |
. 2
![]() ![]() | |
2 | mp2.2 |
. . 3
![]() ![]() | |
3 | mp2.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpi 15 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | ax-mp 5 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: impbii 126 pm3.2i 272 sstri 3189 0disj 4027 disjx0 4029 ontr2exmid 4558 0elsucexmid 4598 relres 4971 cnvdif 5073 funopab4 5292 fun0 5313 fvsn 5754 reltpos 6305 tpostpos 6319 tpos0 6329 oawordriexmid 6525 swoer 6617 xpider 6662 erinxp 6665 domfiexmid 6936 diffitest 6945 pw1dom2 7289 ltrel 8083 lerel 8085 frecfzennn 10500 sum0 11534 qnnen 12591 hovercncf 14825 lgsquadlem1 15234 lgsquadlem2 15235 |
Copyright terms: Public domain | W3C validator |