| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > disjx0 | GIF version | ||
| Description: An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjx0 | ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 3507 | . 2 ⊢ ∅ ⊆ {∅} | |
| 2 | disjxsn 4057 | . 2 ⊢ Disj 𝑥 ∈ {∅}𝐵 | |
| 3 | disjss1 4041 | . 2 ⊢ (∅ ⊆ {∅} → (Disj 𝑥 ∈ {∅}𝐵 → Disj 𝑥 ∈ ∅ 𝐵)) | |
| 4 | 1, 2, 3 | mp2 16 | 1 ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ⊆ wss 3174 ∅c0 3468 {csn 3643 Disj wdisj 4035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rmo 2494 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 df-sn 3649 df-disj 4036 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |