ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjx0 GIF version

Theorem disjx0 4058
Description: An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjx0 Disj 𝑥 ∈ ∅ 𝐵

Proof of Theorem disjx0
StepHypRef Expression
1 0ss 3507 . 2 ∅ ⊆ {∅}
2 disjxsn 4057 . 2 Disj 𝑥 ∈ {∅}𝐵
3 disjss1 4041 . 2 (∅ ⊆ {∅} → (Disj 𝑥 ∈ {∅}𝐵Disj 𝑥 ∈ ∅ 𝐵))
41, 2, 3mp2 16 1 Disj 𝑥 ∈ ∅ 𝐵
Colors of variables: wff set class
Syntax hints:  wss 3174  c0 3468  {csn 3643  Disj wdisj 4035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rmo 2494  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-disj 4036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator