Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disjx0 | GIF version |
Description: An empty collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjx0 | ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3447 | . 2 ⊢ ∅ ⊆ {∅} | |
2 | disjxsn 3980 | . 2 ⊢ Disj 𝑥 ∈ {∅}𝐵 | |
3 | disjss1 3965 | . 2 ⊢ (∅ ⊆ {∅} → (Disj 𝑥 ∈ {∅}𝐵 → Disj 𝑥 ∈ ∅ 𝐵)) | |
4 | 1, 2, 3 | mp2 16 | 1 ⊢ Disj 𝑥 ∈ ∅ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ⊆ wss 3116 ∅c0 3409 {csn 3576 Disj wdisj 3959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rmo 2452 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-disj 3960 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |