ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ss Unicode version

Theorem 0ss 3489
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
0ss  |-  (/)  C_  A

Proof of Theorem 0ss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3454 . . 3  |-  -.  x  e.  (/)
21pm2.21i 647 . 2  |-  ( x  e.  (/)  ->  x  e.  A )
32ssriv 3187 1  |-  (/)  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2167    C_ wss 3157   (/)c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451
This theorem is referenced by:  ss0b  3490  ssdifeq0  3533  sssnr  3783  ssprr  3786  uni0  3866  int0el  3904  0disj  4030  disjx0  4032  tr0  4142  0elpw  4197  exmidsssn  4235  fr0  4386  elomssom  4641  rel0  4788  0ima  5029  fun0  5316  f0  5448  el2oss1o  6501  oaword1  6529  0domg  6898  nnnninf  7192  exmidfodomrlemim  7268  pw1on  7293  sum0  11553  prod0  11750  ennnfonelemj0  12618  ennnfonelemkh  12629  lsp0  13979  lss0v  13986  0opn  14242  baspartn  14286  0cld  14348  ntr0  14370  bdeq0  15513  bj-omtrans  15602  nninfsellemsuc  15656
  Copyright terms: Public domain W3C validator