ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ss Unicode version

Theorem 0ss 3507
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
0ss  |-  (/)  C_  A

Proof of Theorem 0ss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3472 . . 3  |-  -.  x  e.  (/)
21pm2.21i 647 . 2  |-  ( x  e.  (/)  ->  x  e.  A )
32ssriv 3205 1  |-  (/)  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2178    C_ wss 3174   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469
This theorem is referenced by:  ss0b  3508  ssdifeq0  3551  sssnr  3807  ssprr  3810  uni0  3891  int0el  3929  0disj  4056  disjx0  4058  tr0  4169  0elpw  4224  exmidsssn  4262  fr0  4416  elomssom  4671  rel0  4818  0ima  5061  fun0  5351  f0  5488  el2oss1o  6552  oaword1  6580  0domg  6959  nnnninf  7254  exmidfodomrlemim  7340  pw1on  7372  fzowrddc  11138  swrd00g  11140  swrdlend  11149  sum0  11814  prod0  12011  0bits  12385  ennnfonelemj0  12887  ennnfonelemkh  12898  lsp0  14300  lss0v  14307  0opn  14593  baspartn  14637  0cld  14699  ntr0  14721  bdeq0  16002  bj-omtrans  16091  nninfsellemsuc  16151  nnnninfex  16161
  Copyright terms: Public domain W3C validator