| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0ss | Unicode version | ||
| Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 0ss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3472 |
. . 3
| |
| 2 | 1 | pm2.21i 647 |
. 2
|
| 3 | 2 | ssriv 3205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 |
| This theorem is referenced by: ss0b 3508 ssdifeq0 3551 sssnr 3807 ssprr 3810 uni0 3891 int0el 3929 0disj 4056 disjx0 4058 tr0 4169 0elpw 4224 exmidsssn 4262 fr0 4416 elomssom 4671 rel0 4818 0ima 5061 fun0 5351 f0 5488 el2oss1o 6552 oaword1 6580 0domg 6959 nnnninf 7254 exmidfodomrlemim 7340 pw1on 7372 fzowrddc 11138 swrd00g 11140 swrdlend 11149 sum0 11814 prod0 12011 0bits 12385 ennnfonelemj0 12887 ennnfonelemkh 12898 lsp0 14300 lss0v 14307 0opn 14593 baspartn 14637 0cld 14699 ntr0 14721 bdeq0 16002 bj-omtrans 16091 nninfsellemsuc 16151 nnnninfex 16161 |
| Copyright terms: Public domain | W3C validator |