ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ss Unicode version

Theorem 0ss 3447
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
0ss  |-  (/)  C_  A

Proof of Theorem 0ss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3413 . . 3  |-  -.  x  e.  (/)
21pm2.21i 636 . 2  |-  ( x  e.  (/)  ->  x  e.  A )
32ssriv 3146 1  |-  (/)  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2136    C_ wss 3116   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by:  ss0b  3448  ssdifeq0  3491  sssnr  3733  ssprr  3736  uni0  3816  int0el  3854  0disj  3979  disjx0  3981  tr0  4091  0elpw  4143  exmidsssn  4181  fr0  4329  elomssom  4582  rel0  4729  0ima  4964  fun0  5246  f0  5378  el2oss1o  6411  oaword1  6439  0domg  6803  nnnninf  7090  exmidfodomrlemim  7157  pw1on  7182  sum0  11329  prod0  11526  ennnfonelemj0  12334  ennnfonelemkh  12345  0opn  12644  baspartn  12688  0cld  12752  ntr0  12774  bdeq0  13749  bj-omtrans  13838  nninfsellemsuc  13892
  Copyright terms: Public domain W3C validator