ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ss Unicode version

Theorem 0ss 3530
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
0ss  |-  (/)  C_  A

Proof of Theorem 0ss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3495 . . 3  |-  -.  x  e.  (/)
21pm2.21i 649 . 2  |-  ( x  e.  (/)  ->  x  e.  A )
32ssriv 3228 1  |-  (/)  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2200    C_ wss 3197   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492
This theorem is referenced by:  ss0b  3531  ssdifeq0  3574  sssnr  3831  ssprr  3834  uni0  3915  int0el  3953  0disj  4080  disjx0  4082  tr0  4193  0elpw  4248  exmidsssn  4286  fr0  4442  elomssom  4697  rel0  4844  0ima  5088  fun0  5379  f0  5516  el2oss1o  6589  oaword1  6617  0domg  6998  nnnninf  7293  exmidfodomrlemim  7379  pw1on  7411  fzowrddc  11179  swrd00g  11181  swrdlend  11190  sum0  11899  prod0  12096  0bits  12470  ennnfonelemj0  12972  ennnfonelemkh  12983  lsp0  14387  lss0v  14394  0opn  14680  baspartn  14724  0cld  14786  ntr0  14808  bdeq0  16230  bj-omtrans  16319  nninfsellemsuc  16378  nnnninfex  16388
  Copyright terms: Public domain W3C validator