| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0ss | Unicode version | ||
| Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 0ss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3455 |
. . 3
| |
| 2 | 1 | pm2.21i 647 |
. 2
|
| 3 | 2 | ssriv 3188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3452 |
| This theorem is referenced by: ss0b 3491 ssdifeq0 3534 sssnr 3784 ssprr 3787 uni0 3867 int0el 3905 0disj 4031 disjx0 4033 tr0 4143 0elpw 4198 exmidsssn 4236 fr0 4387 elomssom 4642 rel0 4789 0ima 5030 fun0 5317 f0 5451 el2oss1o 6510 oaword1 6538 0domg 6907 nnnninf 7201 exmidfodomrlemim 7280 pw1on 7309 sum0 11570 prod0 11767 0bits 12141 ennnfonelemj0 12643 ennnfonelemkh 12654 lsp0 14055 lss0v 14062 0opn 14326 baspartn 14370 0cld 14432 ntr0 14454 bdeq0 15597 bj-omtrans 15686 nninfsellemsuc 15743 |
| Copyright terms: Public domain | W3C validator |