ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ss Unicode version

Theorem 0ss 3463
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
0ss  |-  (/)  C_  A

Proof of Theorem 0ss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3428 . . 3  |-  -.  x  e.  (/)
21pm2.21i 646 . 2  |-  ( x  e.  (/)  ->  x  e.  A )
32ssriv 3161 1  |-  (/)  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2148    C_ wss 3131   (/)c0 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-in 3137  df-ss 3144  df-nul 3425
This theorem is referenced by:  ss0b  3464  ssdifeq0  3507  sssnr  3755  ssprr  3758  uni0  3838  int0el  3876  0disj  4002  disjx0  4004  tr0  4114  0elpw  4166  exmidsssn  4204  fr0  4353  elomssom  4606  rel0  4753  0ima  4990  fun0  5276  f0  5408  el2oss1o  6446  oaword1  6474  0domg  6839  nnnninf  7126  exmidfodomrlemim  7202  pw1on  7227  sum0  11398  prod0  11595  ennnfonelemj0  12404  ennnfonelemkh  12415  lsp0  13514  lss0v  13521  0opn  13591  baspartn  13635  0cld  13697  ntr0  13719  bdeq0  14704  bj-omtrans  14793  nninfsellemsuc  14846
  Copyright terms: Public domain W3C validator