![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0ss | Unicode version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
0ss |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3428 |
. . 3
![]() ![]() ![]() ![]() ![]() | |
2 | 1 | pm2.21i 646 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | ssriv 3161 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 df-in 3137 df-ss 3144 df-nul 3425 |
This theorem is referenced by: ss0b 3464 ssdifeq0 3507 sssnr 3755 ssprr 3758 uni0 3838 int0el 3876 0disj 4002 disjx0 4004 tr0 4114 0elpw 4166 exmidsssn 4204 fr0 4353 elomssom 4606 rel0 4753 0ima 4990 fun0 5276 f0 5408 el2oss1o 6446 oaword1 6474 0domg 6839 nnnninf 7126 exmidfodomrlemim 7202 pw1on 7227 sum0 11398 prod0 11595 ennnfonelemj0 12404 ennnfonelemkh 12415 lsp0 13514 lss0v 13521 0opn 13591 baspartn 13635 0cld 13697 ntr0 13719 bdeq0 14704 bj-omtrans 14793 nninfsellemsuc 14846 |
Copyright terms: Public domain | W3C validator |