| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0ss | Unicode version | ||
| Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 0ss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3454 |
. . 3
| |
| 2 | 1 | pm2.21i 647 |
. 2
|
| 3 | 2 | ssriv 3187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 |
| This theorem is referenced by: ss0b 3490 ssdifeq0 3533 sssnr 3783 ssprr 3786 uni0 3866 int0el 3904 0disj 4030 disjx0 4032 tr0 4142 0elpw 4197 exmidsssn 4235 fr0 4386 elomssom 4641 rel0 4788 0ima 5029 fun0 5316 f0 5448 el2oss1o 6501 oaword1 6529 0domg 6898 nnnninf 7192 exmidfodomrlemim 7268 pw1on 7293 sum0 11553 prod0 11750 ennnfonelemj0 12618 ennnfonelemkh 12629 lsp0 13979 lss0v 13986 0opn 14242 baspartn 14286 0cld 14348 ntr0 14370 bdeq0 15513 bj-omtrans 15602 nninfsellemsuc 15656 |
| Copyright terms: Public domain | W3C validator |