| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0ss | Unicode version | ||
| Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| 0ss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3464 |
. . 3
| |
| 2 | 1 | pm2.21i 647 |
. 2
|
| 3 | 2 | ssriv 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 |
| This theorem is referenced by: ss0b 3500 ssdifeq0 3543 sssnr 3794 ssprr 3797 uni0 3877 int0el 3915 0disj 4041 disjx0 4043 tr0 4153 0elpw 4208 exmidsssn 4246 fr0 4398 elomssom 4653 rel0 4800 0ima 5042 fun0 5332 f0 5466 el2oss1o 6529 oaword1 6557 0domg 6934 nnnninf 7228 exmidfodomrlemim 7309 pw1on 7338 fzowrddc 11100 swrd00g 11102 swrdlend 11111 sum0 11699 prod0 11896 0bits 12270 ennnfonelemj0 12772 ennnfonelemkh 12783 lsp0 14185 lss0v 14192 0opn 14478 baspartn 14522 0cld 14584 ntr0 14606 bdeq0 15803 bj-omtrans 15892 nninfsellemsuc 15949 nnnninfex 15959 |
| Copyright terms: Public domain | W3C validator |