ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ss Unicode version

Theorem 0ss 3490
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
0ss  |-  (/)  C_  A

Proof of Theorem 0ss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3455 . . 3  |-  -.  x  e.  (/)
21pm2.21i 647 . 2  |-  ( x  e.  (/)  ->  x  e.  A )
32ssriv 3188 1  |-  (/)  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2167    C_ wss 3157   (/)c0 3451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3452
This theorem is referenced by:  ss0b  3491  ssdifeq0  3534  sssnr  3784  ssprr  3787  uni0  3867  int0el  3905  0disj  4031  disjx0  4033  tr0  4143  0elpw  4198  exmidsssn  4236  fr0  4387  elomssom  4642  rel0  4789  0ima  5030  fun0  5317  f0  5451  el2oss1o  6510  oaword1  6538  0domg  6907  nnnninf  7201  exmidfodomrlemim  7280  pw1on  7309  sum0  11570  prod0  11767  0bits  12141  ennnfonelemj0  12643  ennnfonelemkh  12654  lsp0  14055  lss0v  14062  0opn  14326  baspartn  14370  0cld  14432  ntr0  14454  bdeq0  15597  bj-omtrans  15686  nninfsellemsuc  15743
  Copyright terms: Public domain W3C validator