![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0ss | Unicode version |
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
0ss |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3450 |
. . 3
![]() ![]() ![]() ![]() ![]() | |
2 | 1 | pm2.21i 647 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | ssriv 3183 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-in 3159 df-ss 3166 df-nul 3447 |
This theorem is referenced by: ss0b 3486 ssdifeq0 3529 sssnr 3779 ssprr 3782 uni0 3862 int0el 3900 0disj 4026 disjx0 4028 tr0 4138 0elpw 4193 exmidsssn 4231 fr0 4382 elomssom 4637 rel0 4784 0ima 5025 fun0 5312 f0 5444 el2oss1o 6496 oaword1 6524 0domg 6893 nnnninf 7185 exmidfodomrlemim 7261 pw1on 7286 sum0 11531 prod0 11728 ennnfonelemj0 12558 ennnfonelemkh 12569 lsp0 13919 lss0v 13926 0opn 14174 baspartn 14218 0cld 14280 ntr0 14302 bdeq0 15359 bj-omtrans 15448 nninfsellemsuc 15502 |
Copyright terms: Public domain | W3C validator |