ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ss Unicode version

Theorem 0ss 3486
Description: The null set is a subset of any class. Part of Exercise 1 of [TakeutiZaring] p. 22. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
0ss  |-  (/)  C_  A

Proof of Theorem 0ss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3451 . . 3  |-  -.  x  e.  (/)
21pm2.21i 647 . 2  |-  ( x  e.  (/)  ->  x  e.  A )
32ssriv 3184 1  |-  (/)  C_  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2164    C_ wss 3154   (/)c0 3447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3156  df-in 3160  df-ss 3167  df-nul 3448
This theorem is referenced by:  ss0b  3487  ssdifeq0  3530  sssnr  3780  ssprr  3783  uni0  3863  int0el  3901  0disj  4027  disjx0  4029  tr0  4139  0elpw  4194  exmidsssn  4232  fr0  4383  elomssom  4638  rel0  4785  0ima  5026  fun0  5313  f0  5445  el2oss1o  6498  oaword1  6526  0domg  6895  nnnninf  7187  exmidfodomrlemim  7263  pw1on  7288  sum0  11534  prod0  11731  ennnfonelemj0  12561  ennnfonelemkh  12572  lsp0  13922  lss0v  13929  0opn  14185  baspartn  14229  0cld  14291  ntr0  14313  bdeq0  15429  bj-omtrans  15518  nninfsellemsuc  15572
  Copyright terms: Public domain W3C validator