Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dveeq1 | Unicode version |
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 19-Feb-2018.) |
Ref | Expression |
---|---|
dveeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dveeq2 1802 | . 2 | |
2 | equcom 1693 | . 2 | |
3 | 2 | albii 1457 | . 2 |
4 | 1, 2, 3 | 3imtr3g 203 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wal 1340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-sb 1750 |
This theorem is referenced by: sbal2 2007 |
Copyright terms: Public domain | W3C validator |