ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveeq1 Unicode version

Theorem dveeq1 2048
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 19-Feb-2018.)
Assertion
Ref Expression
dveeq1  |-  ( -. 
A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
)
Distinct variable group:    x, z

Proof of Theorem dveeq1
StepHypRef Expression
1 dveeq2 1839 . 2  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
2 equcom 1730 . 2  |-  ( z  =  y  <->  y  =  z )
32albii 1494 . 2  |-  ( A. x  z  =  y  <->  A. x  y  =  z )
41, 2, 33imtr3g 204 1  |-  ( -. 
A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  sbal2  2049
  Copyright terms: Public domain W3C validator