| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dveeq1 | GIF version | ||
| Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| dveeq1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dveeq2 1838 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
| 2 | equcom 1729 | . 2 ⊢ (𝑧 = 𝑦 ↔ 𝑦 = 𝑧) | |
| 3 | 2 | albii 1493 | . 2 ⊢ (∀𝑥 𝑧 = 𝑦 ↔ ∀𝑥 𝑦 = 𝑧) |
| 4 | 1, 2, 3 | 3imtr3g 204 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: sbal2 2048 |
| Copyright terms: Public domain | W3C validator |