ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveeq1 GIF version

Theorem dveeq1 2047
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 19-Feb-2018.)
Assertion
Ref Expression
dveeq1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
Distinct variable group:   𝑥,𝑧

Proof of Theorem dveeq1
StepHypRef Expression
1 dveeq2 1838 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
2 equcom 1729 . 2 (𝑧 = 𝑦𝑦 = 𝑧)
32albii 1493 . 2 (∀𝑥 𝑧 = 𝑦 ↔ ∀𝑥 𝑦 = 𝑧)
41, 2, 33imtr3g 204 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786
This theorem is referenced by:  sbal2  2048
  Copyright terms: Public domain W3C validator