ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab3gf Unicode version

Theorem elab3gf 2910
Description: Membership in a class abstraction, with a weaker antecedent than elabgf 2902. (Contributed by NM, 6-Sep-2011.)
Hypotheses
Ref Expression
elab3gf.1  |-  F/_ x A
elab3gf.2  |-  F/ x ps
elab3gf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elab3gf  |-  ( ( ps  ->  A  e.  B )  ->  ( A  e.  { x  |  ph }  <->  ps )
)

Proof of Theorem elab3gf
StepHypRef Expression
1 elab3gf.1 . . . 4  |-  F/_ x A
2 elab3gf.2 . . . 4  |-  F/ x ps
3 elab3gf.3 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
41, 2, 3elabgf 2902 . . 3  |-  ( A  e.  { x  | 
ph }  ->  ( A  e.  { x  |  ph }  <->  ps )
)
54ibi 176 . 2  |-  ( A  e.  { x  | 
ph }  ->  ps )
61, 2, 3elabgf 2902 . . . 4  |-  ( A  e.  B  ->  ( A  e.  { x  |  ph }  <->  ps )
)
76imim2i 12 . . 3  |-  ( ( ps  ->  A  e.  B )  ->  ( ps  ->  ( A  e. 
{ x  |  ph } 
<->  ps ) ) )
8 biimpr 130 . . 3  |-  ( ( A  e.  { x  |  ph }  <->  ps )  ->  ( ps  ->  A  e.  { x  |  ph } ) )
97, 8syli 37 . 2  |-  ( ( ps  ->  A  e.  B )  ->  ( ps  ->  A  e.  {
x  |  ph }
) )
105, 9impbid2 143 1  |-  ( ( ps  ->  A  e.  B )  ->  ( A  e.  { x  |  ph }  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   F/wnf 1471    e. wcel 2164   {cab 2179   F/_wnfc 2323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  elab3g  2911
  Copyright terms: Public domain W3C validator