Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elab3gf | Unicode version |
Description: Membership in a class abstraction, with a weaker antecedent than elabgf 2850. (Contributed by NM, 6-Sep-2011.) |
Ref | Expression |
---|---|
elab3gf.1 | |
elab3gf.2 | |
elab3gf.3 |
Ref | Expression |
---|---|
elab3gf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3gf.1 | . . . 4 | |
2 | elab3gf.2 | . . . 4 | |
3 | elab3gf.3 | . . . 4 | |
4 | 1, 2, 3 | elabgf 2850 | . . 3 |
5 | 4 | ibi 175 | . 2 |
6 | 1, 2, 3 | elabgf 2850 | . . . 4 |
7 | 6 | imim2i 12 | . . 3 |
8 | biimpr 129 | . . 3 | |
9 | 7, 8 | syli 37 | . 2 |
10 | 5, 9 | impbid2 142 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1332 wnf 1437 wcel 2125 cab 2140 wnfc 2283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 |
This theorem is referenced by: elab3g 2859 |
Copyright terms: Public domain | W3C validator |