![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elab3gf | GIF version |
Description: Membership in a class abstraction, with a weaker antecedent than elabgf 2902. (Contributed by NM, 6-Sep-2011.) |
Ref | Expression |
---|---|
elab3gf.1 | ⊢ Ⅎ𝑥𝐴 |
elab3gf.2 | ⊢ Ⅎ𝑥𝜓 |
elab3gf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab3gf | ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3gf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | elab3gf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | elab3gf.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | elabgf 2902 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
5 | 4 | ibi 176 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓) |
6 | 1, 2, 3 | elabgf 2902 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
7 | 6 | imim2i 12 | . . 3 ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝜓 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
8 | biimpr 130 | . . 3 ⊢ ((𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
9 | 7, 8 | syli 37 | . 2 ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) |
10 | 5, 9 | impbid2 143 | 1 ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 Ⅎwnf 1471 ∈ wcel 2164 {cab 2179 Ⅎwnfc 2323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 |
This theorem is referenced by: elab3g 2911 |
Copyright terms: Public domain | W3C validator |