Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elab3gf | GIF version |
Description: Membership in a class abstraction, with a weaker antecedent than elabgf 2868. (Contributed by NM, 6-Sep-2011.) |
Ref | Expression |
---|---|
elab3gf.1 | ⊢ Ⅎ𝑥𝐴 |
elab3gf.2 | ⊢ Ⅎ𝑥𝜓 |
elab3gf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab3gf | ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3gf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | elab3gf.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | elab3gf.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | elabgf 2868 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
5 | 4 | ibi 175 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓) |
6 | 1, 2, 3 | elabgf 2868 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
7 | 6 | imim2i 12 | . . 3 ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝜓 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓))) |
8 | biimpr 129 | . . 3 ⊢ ((𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
9 | 7, 8 | syli 37 | . 2 ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) |
10 | 5, 9 | impbid2 142 | 1 ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 Ⅎwnf 1448 ∈ wcel 2136 {cab 2151 Ⅎwnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: elab3g 2877 |
Copyright terms: Public domain | W3C validator |