ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab3gf GIF version

Theorem elab3gf 2862
Description: Membership in a class abstraction, with a weaker antecedent than elabgf 2854. (Contributed by NM, 6-Sep-2011.)
Hypotheses
Ref Expression
elab3gf.1 𝑥𝐴
elab3gf.2 𝑥𝜓
elab3gf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elab3gf ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))

Proof of Theorem elab3gf
StepHypRef Expression
1 elab3gf.1 . . . 4 𝑥𝐴
2 elab3gf.2 . . . 4 𝑥𝜓
3 elab3gf.3 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3elabgf 2854 . . 3 (𝐴 ∈ {𝑥𝜑} → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
54ibi 175 . 2 (𝐴 ∈ {𝑥𝜑} → 𝜓)
61, 2, 3elabgf 2854 . . . 4 (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
76imim2i 12 . . 3 ((𝜓𝐴𝐵) → (𝜓 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
8 biimpr 129 . . 3 ((𝐴 ∈ {𝑥𝜑} ↔ 𝜓) → (𝜓𝐴 ∈ {𝑥𝜑}))
97, 8syli 37 . 2 ((𝜓𝐴𝐵) → (𝜓𝐴 ∈ {𝑥𝜑}))
105, 9impbid2 142 1 ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1335  wnf 1440  wcel 2128  {cab 2143  wnfc 2286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714
This theorem is referenced by:  elab3g  2863
  Copyright terms: Public domain W3C validator