ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab3gf GIF version

Theorem elab3gf 2922
Description: Membership in a class abstraction, with a weaker antecedent than elabgf 2914. (Contributed by NM, 6-Sep-2011.)
Hypotheses
Ref Expression
elab3gf.1 𝑥𝐴
elab3gf.2 𝑥𝜓
elab3gf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elab3gf ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))

Proof of Theorem elab3gf
StepHypRef Expression
1 elab3gf.1 . . . 4 𝑥𝐴
2 elab3gf.2 . . . 4 𝑥𝜓
3 elab3gf.3 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3elabgf 2914 . . 3 (𝐴 ∈ {𝑥𝜑} → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
54ibi 176 . 2 (𝐴 ∈ {𝑥𝜑} → 𝜓)
61, 2, 3elabgf 2914 . . . 4 (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
76imim2i 12 . . 3 ((𝜓𝐴𝐵) → (𝜓 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓)))
8 biimpr 130 . . 3 ((𝐴 ∈ {𝑥𝜑} ↔ 𝜓) → (𝜓𝐴 ∈ {𝑥𝜑}))
97, 8syli 37 . 2 ((𝜓𝐴𝐵) → (𝜓𝐴 ∈ {𝑥𝜑}))
105, 9impbid2 143 1 ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wnf 1482  wcel 2175  {cab 2190  wnfc 2334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773
This theorem is referenced by:  elab3g  2923
  Copyright terms: Public domain W3C validator