ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab3g Unicode version

Theorem elab3g 2889
Description: Membership in a class abstraction, with a weaker antecedent than elabg 2884. (Contributed by NM, 29-Aug-2006.)
Hypothesis
Ref Expression
elab3g.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elab3g  |-  ( ( ps  ->  A  e.  B )  ->  ( A  e.  { x  |  ph }  <->  ps )
)
Distinct variable groups:    ps, x    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem elab3g
StepHypRef Expression
1 nfcv 2319 . 2  |-  F/_ x A
2 nfv 1528 . 2  |-  F/ x ps
3 elab3g.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
41, 2, 3elab3gf 2888 1  |-  ( ( ps  ->  A  e.  B )  ->  ( A  e.  { x  |  ph }  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2148   {cab 2163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740
This theorem is referenced by:  elab3  2890  elssabg  4149  elrnmptg  4880  elrelimasn  4995  fvelrnb  5564  elmapg  6661
  Copyright terms: Public domain W3C validator