ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elab3g Unicode version

Theorem elab3g 2924
Description: Membership in a class abstraction, with a weaker antecedent than elabg 2919. (Contributed by NM, 29-Aug-2006.)
Hypothesis
Ref Expression
elab3g.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elab3g  |-  ( ( ps  ->  A  e.  B )  ->  ( A  e.  { x  |  ph }  <->  ps )
)
Distinct variable groups:    ps, x    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem elab3g
StepHypRef Expression
1 nfcv 2348 . 2  |-  F/_ x A
2 nfv 1551 . 2  |-  F/ x ps
3 elab3g.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
41, 2, 3elab3gf 2923 1  |-  ( ( ps  ->  A  e.  B )  ->  ( A  e.  { x  |  ph }  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   {cab 2191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774
This theorem is referenced by:  elab3  2925  elssabg  4192  elrnmptg  4930  elrelimasn  5048  fvelrnb  5626  elmapg  6748  isghm  13579  ellspsn  14179
  Copyright terms: Public domain W3C validator